

[image: Alternative text]
pycromanager is a python package that enables python control of micro-manager [https://micro-manager.org/] as well as the simple development of customized experiments that invlolve microscope hardware control and/or image processing. More information can be found in the pre-print [https://arxiv.org/abs/2006.11330].

[image: Overview of pycro-manager]
Pycro-manager overview. The grey boxes denote the C++ and Java components of µManager, including the GUI, Java APIs, and a hardware abstraction layer that enables generic microscope control code to work on a variety of hardware components. The red box shows Pycro-Manager, which is built upon a high speed data transfer layer that can operate within a machine or over a network. This layer enables access to the existing capabilities of µManager as if they were written in Python. In addition, a new Acquisition API provides powerful automation of data collection combined with easy ways to inter-operate with Python libraries (purple boxes) for hardware control, data visualization, scientific computing, etc.

Installation/setup

Features

Applications

API Reference

Indices and tables

	Index

	Module Index

	Search Page

Installation/setup

	Install pycro-manager using pip install pycromanager

	Download newest version of micro-manager 2.0 [https://micro-manager.org/wiki/Micro-Manager_Nightly_Builds]

	Open Micro-Manager, select tools-options, and check the box that says Run server on port 4827 (you only need to do this once)

Verify that installation worked

Run the following code:

from pycromanager import Bridge

bridge = Bridge()
bridge.get_core()

which will give an output like:

Out[1]: JavaObjectShadow for : mmcorej.CMMCore

Troubleshooting

Upon creating the Bridge, you may see an error with something like:

UserWarning: Version mistmatch between Java ZMQ server and Python client.
Java ZMQ server version: 2.4.0
Python client expected version: 2.5.0

In this case case your Micro-manager version Pycro-manager versions are out of sync. The best fix is to down the latest versions of both. Uprgade to the latest Pycro-manager with: pip install pycromanager --upgrade

Features

pycromanager has several options for interacting with micro-manager which can be used independently or in combination. The high level APIs described in Acquisitions are usually the best place to start. They describe how to run standard multi-dimensional acquisitions (i.e. Z-stacks, multiple XY posisitons, etc.), customized ones with abitrary axes and hardware settings, or ones generated through the Micro-magellan [https://micro-manager.org/wiki/MicroMagellan] GUI using the pycromanager Acquisition class. Acquisition’s support customization such as modifying image data on-the-fly, controlling acquisition in response to data, integrating non-micro-manger supported hardware, running high-speed acquisitions with hardware TTL triggering, and using customized visualization/data saving. The data acquired by Acquisition’s can be read into numpy or dask arrays using the Dataset, as described in Reading acquired data.

For less complicated experiments (e.g. just snapping images on a camera, moving a single piece of hardware), Controlling Micro-Manager core might be a good place to start.

Finally, for experiments that require Java-based micro-manager plugins or already work well with existing beanshell scripts [https://micro-manager.org/wiki/Example_Beanshell_scripts], try Micro-manager Java APIs or Calling custom Java code.

Contents:

	Acquisitions
	Specifying data to acquire
	Multi-dimensional acquisitions

	Acquisition events

	Micro-Magellan Acquisitions

	Acquisition hooks

	Image processors

	Fast acquisition with hardware triggering

	Controlling Micro-Magellan

	Reading acquired data
	Creating a Dataset object

	Reading data

	Opening data as Dask array

	Controlling Micro-Manager core

	Micro-manager Java APIs

	Calling custom Java code

Acquisitions

The Acquisition class is a powerful abstraction that can be used for a wide range of microscopy workflows. The only requirement for running an acquisition is to use one of several possible mechanisms for Specifying data to acquire

More advanced functionality can be implemented through the use of Acquisition hooks, which are used to modify acquisition control on-the-fly or synchrnoize hardware outside of micro-manager with acquisition, or with Image processors, which can be used to modify images during before saving/display or to divert images away from display/saving to custom endpoints.

The Acquisition class can also be used for Fast acquisition with hardware triggering.

Reading acquired data describes how to read the data acquired by an Acquisition as a numpy or dask array.

The figure figure below gives an overview of all of the features this class provides.

[image: Overview figure of pycro-manager Acquisitions]
Overview of pycro-manager Acquisitions. The blue boxes show acquisitions starting with some source of ”acquisition events”, instructions for image collection and associated hardware changes. Green boxes represent acquisition events that are optimized, then used to move hardware and collect images. ”Acquisition hooks” can be used to execute arbitrary code synchronously or modify/delete instructions on-the-fly. Magenta boxes represent acquired images going straight to the default image saving and display, or being diverted through ”image processors”, which allow for modification of images or diversion to external saving and visualization.

Contents:

	Specifying data to acquire
	Multi-dimensional acquisitions

	Acquisition events
	XY tiling

	Micro-Magellan Acquisitions

	Acquisition hooks

	Image processors

	Fast acquisition with hardware triggering

	Controlling Micro-Magellan

Specifying data to acquire

The Acquisition class enables both simple mutli-dimensional acquisitions and complex data-adaptive acquisitions. Acquisitions take instructions in the form of acquisition events, which are a set of instructions for setting hardware positions for the acquisition of a single image.

Multi-dimensional acquisitions

Multi-dimensional acquisitions are a common type of acquisition in which images are collected across some set of time, z-stack, channel, and xy position. The multi_d_acquisition_events function can be used to automatically generate the required acquisition events. For a full tutorial on how to use this function see MDA Tutorial

The following shows a the simple example of acquiring a single z-stack:

from pycromanager import Acquisition, multi_d_acquisition_events

with Acquisition(directory='/path/to/saving/dir', name='acquisition_name') as acq:
 # Generate the events for a single z-stack
 events = multi_d_acquisition_events(z_start=0, z_end=10, z_step=0.5)
 acq.acquire(events)

In addition to z-stacks, this function can also be used to do timelapses, different channels, and multiple XY stage positions. This example shows how to run a multi-channel timelapse with z-stacks:

with Acquisition(directory='/path/to/saving/dir', name='acquisition_name') as acq:
 events = multi_d_acquisition_events(
 num_time_points=4, time_interval_s=0,
 channel_group='channel', channels=['DAPI', 'FITC'],
 z_start=0, z_end=6, z_step=0.4,
 order='tcz')

Acquisition events

If more fine-grained control of the acquired data is needed, acquisition events can be manually created. The following example shows the same z-stack as the example above, but with acquisition
events created manually:

with Acquisition('/Users/henrypinkard/megllandump', 'pythonacqtest') as acq:
 #create one event for the image at each z-slice
 events = []
 for index, z_um in enumerate(np.arange(start=0, stop=10, step=0.5)):
 evt = {
 #'axes' is required. It is used by the image viewer and data storage to
 #identify the acquired image
 'axes': {'z': index},

 #the 'z' field provides the z position in µm
 'z': z_um}
 events.append(evt)

 acq.acquire(events)

This mechanism can be used to make acquisitions that vary device properties across arbitrary named axes:

with Acquisition('/Users/henrypinkard/megllandump', 'pythonacqtest') as acq:
 events = []
 for index in range(10):
 evt = {
 'axes': {'arbitrary_axis_name': index},
 #'properties' for the manipulation of hardware by specifying an arbitrary
 #list of properties
 'properties':
 [['device_name', 'property_name', 'property_value'],
 ['device_name_2', 'property_name_2', 'property_value_2']]}
 events.append(evt)

 acq.acquire(events)

Channels can be created by providing the group and preset name of a Micro-manager config group [https://micro-manager.org/wiki/Micro-Manager_Configuration_Guide#Configuration_Presets]. The ‘axes’ field is not needed for channels because it is inferred automatically.

 event = {
'channel': {
 'group': 'name_of_micro_manager_config_group',
 'config': 'setting_of_micro_manager_preset'
}}

For the values in provided in the micro-manager demo config, this would be:

 event = {
'channel': {
 'group': 'channel',
 'config': 'DAPI'
}}

A description of all possible fields in an acquisition event can be found in the Acquisition event specification

XY tiling

Pycro-manager has special support for acquisitions in which multiple images are tiled together to form large, high-resolution images. In this mode, data will automatically be saved in a multi-resolution pyramid, so that it can be efficiently viewed at multiple levels of zoom. These features are also available though Micro-magellan [https://micro-manager.org/wiki/MicroMagellan], which provides a GUI for using them as well as other higher level features.

Note

In order for this functionality to work, the current configuration must have a correctly calibrated affine transform matrix, which gives the corrspondence between the coordinate systems of the camera and the XY stage. This can be calibrated automatically in Micro-Manager by using the pixel size calibrator (under Devices–Pixel Size Calibration in the Micro-manager GUI).

To enable this mode, pass in a value in for the tile_overlap argument when creating an acquisition. The value gives the number of pixels by which adjacent tiles will overlap. Specify which tiles to acquire using the row and col fields in acquisition events.

with Acquisition('/path/to/saving/dir', 'saving_name', tile_overlap=10) as acq:
 #10 pixel overlap between adjacent tiles

 #acquire a 2 x 1 grid
 acq.acquire({'row': 0, 'col': 0})
 acq.acquire({'row': 1, 'col': 0})

Micro-Magellan Acquisitions

Another alternative is to launch Micro-magellan [https://micro-manager.org/wiki/MicroMagellan] acquisitions. These include both regular and explore acquisitions [https://micro-manager.org/wiki/MicroMagellan#Explore_Acquisitions]. In the former case, acquisition events are generated automatically from the Micro-Magellan GUI. In the latter, they are created in response to user clicks.

To run a regular Micro-Magellan acquisition, pass in a value to the magellan_acq_index argument, which corresponds to the position of the acquisition to be launched in the Acquisition(s) section of the Micro-Magellan GUI. Passing in 0 corresponds to the default acquisition. Greater numbers can be used to programatically control multiple acquisitions. Alternatively, to launch an explore acquisition, set the magellan_explore argument equal to True.

no need to use the normal "with" syntax because these acquisition are cleaned up automatically
acq = Acquisition(magellan_acq_index=0)

Or do this to launch an explore acquisition
acq = Acquisition(magellan_explore=True)

Optional: block here until the acquisition is finished
acq.await_completion()

Like the other mechanisms for running acquisitions, Micro-Magellan acquisitions can be used with Acquisition hooks and Image processors.

Acquisition hooks

Acquisition hooks can be used for two main purposes: 1) Executing arbitrary code at different points within the acquisition cycle. For example, this could be used to incorporate devices outside of micro-manager into the acquisition cycle. 2) Modifying/deleting acquisition events in progress, for example to skip certain channels, or applying focus corrections on-the-fly

Hooks can either be executed before the hardware updates for a particular acquisition event (a pre_hardware_hook), or after the hardware updates, just before the image is captured (a post_hardware_hook).

The simplest type of acquisition hook is function that takes a single argument (the current acquisition event). Pass this function to the acquisition by adding it as an argument in the constructor. This form might be used, for example, to control other hardware and have it synchronized with acquisition.

def hook_fn(event):
 ### Do some other stuff here ###
 return event

pass in the function as a post_hardware_hook
with Acquisition(directory='/path/to/saving/dir', name='acquisition_name',
 post_hardware_hook_fn=hook_fn) as acq:
 ### acquire some stuff ###

Acquisition hooks can also be used to modify or delete acquisition events:

def hook_fn(event):
 if some_condition:
 return event
 # condition isn't met, so delete this event by not returning it

A hook function that takes three arguments can also be used in cases where one wants to submit additional acquisition events or interact with classes on the Java side (such as the micro-manager core) through the Bridge.

def hook_fn(event, bridge, event_queue):
 core = bridge.get_core()

 ### now call some functions in the micro-manager core ###

 return event

The third argument, event_queue, can be used for submitting additional acquisition events:

#this hook function can control the micro-manager core
def hook_fn(event, bridge, event_queue):

 ### create a new acquisition event in response to something ###
 #event =
 event_queue.put(event)

 return event

If additional events will be submitted here, the typical syntax of with Acquisition.. cannot be used because it will automatically close the acquisition too soon. Instead the acquisition should be created as:

acq = Acquisition(directory='/path/to/saving/dir', name='acquisition_name',
 post_hardware_hook_fn=hook_fn)

When it is finished, it can be closed and cleaned up by passing an None to the event_queue.

#this hook function can control the micro-manager core
def hook_fn(event, bridge, event_queue):

 if acq_end_condition:
 event_queue.put(None)
 else:
 return event

Image processors

Image processors provide access to data as it is being acquired. This allows it to be modified, diverted to customized visualization and saving, or analyzed on-the-fly to control acquisition.

The simplest image processor function takes two arguments: the pixel data (a numpy array) and metadata (a python dictionary) of the current image.

def img_process_fn(image, metadata):

 #add in some new metadata
 metadata['a_new_metadata_key'] = 'a new value'

 #modify the pixels by setting a 100 pixel square at the top left to 0
 image[:100, :100] = 0

 #propogate the image and metadata to the default viewer and saving classes
 return image, metadata

run an acquisition using this image processor
with Acquisition(directory='/path/to/saving/dir', name='acquisition_name',
 image_process_fn=img_process_fn) as acq:
 ### acquire some stuff ###

One particularly useful metadata key is 'Axes' which recovers the 'axes' key that was in the Acquisition event in this image.

def img_process_fn(image, metadata):
 #get the time point index
 time_index = metadata['Axes']['time']

Image processors are not required to take in one image and return one image. They can also return multiple images or no images. In the case of multiple images, they should be returned as a list of (image, metadata) tuples. The 'Axes' or Channel metadata fields will need to be modified to uniquely identify the two images for the purposes of saving or the image viewer.

import copy

def img_process_fn(image, metadata):

 # copy pixels in this example, but in reality
 # you might want to compute something different

 image_2 = np.array(image, copy=True)

 metadata_2 = copy.deepcopy(metadata)

 metadata_2['Channel'] = 'A_new_channel'

 #return as a list of tuples
 return [(image, metadata), (image2, md_2)]

Rather than returning one or more image, metadata tuples to propogate the image to the default viewer and saver, the image processing function can not return anything. This can be used if one wants to delete a specific image, or divert all images to customized saving/visualization code. If the latter behavior is desired, the Acquisition should be created without the name and directory fields.

def img_process_fn(image, metadata):

 ### send image and metadata somewhere ###

this acquisition won't show a viewer or save data
with Acquisition(image_process_fn=img_process_fn) as acq:
 ### acquire some stuff ###

In certain cases one may want to either control something on the Java side or create addition acquisition events in response to one of the images. A four argument processing function can be used for this purpose. This gives access to the Bridge for interacting with the Java side, and an event_queue to which additional acquisition events can be added

def img_process_fn_events(image, metadata, bridge, event_queue):

 ### create a new acquisition event in response to something in the image ###
 #event =
 event_queue.put(event)

 return image, metadata

In the case of using feedback from the image to control acquisition, the typical syntax of with Acquisition... cannot be used because it will automatically close the acquisition too soon. Instead the acquisition should be created as:

acq = Acquisition(directory='/path/to/saving/dir', name='acquisition_name',
 image_process_fn=img_process_fn)

When it is finished, it can be closed and cleaned up by passing an None to the event_queue.

def img_process_fn_events(image, metadata, bridge, event_queue):

 if acq_end_condition:
 event_queue.put(None)
 else:
 #continue adding more events

Fast acquisition with hardware triggering

For the fastest acquisition data acquisition speeds, hardware triggering using TTL pulses is essential. In such setups, hardware components are loaded with sequences of instructions (e.g. physical positions on a stage or a sequence of exposures on a camera). The sequence can then be executed independently of the computer, except for frames being read off a camera as fast as possible.

The Acquisition class has built in support for hardware sequencing, and it will automatically applied whenever it is supported by the hardware being used. There are two general synchronization strategies supported, which differ depending on what hardware device is the “master” (i.e. the one sending out TTL pulses) and which one is the “slave” (i.e. the one receiving them).

In the default strategy, the camera is assumed to be the master device. This means that it will run as fast as possible, and other peripheral devices synchronized with it should update their positions based on the TTL pulses outputed by the camera. Whenever the camera supports this behavior, there is little to no delay between successive frames, and any hardware that needs to repositioned also supports sequenceing, this behavior will automatically occur. If there is a need to adjust additional hardware settings in between successive sequences, this can done using Acquisition hooks.

In the second strategy, the camera is the “slave” device, and there is another external “master” device which controls the synchronization between different hardware components. In this case, the camera should be placed into a mode where it will wait for external triggers before exposing. The specific properties that need to be set will differ from camera to camera, as this behavior is not currently a part of the micro-manager camera API. Once in this state, a pycro-manager Acquisition will cause the camera to shift into a state where it waits for a TTL pulse to trigger each exposure. The only thing remaining is to signal to the external master device that the camera is ready, and so the master device can now begin its synchronization routine. This signalling can be done with an acquisition hook that runs after the camera has been started.

def hook_fn(event):
 ### start external master device here ###
 return event

pass in the function as a post_hardware_hook
with Acquisition(directory='/path/to/saving/dir', name='acquisition_name',
 post_camera_hook_fn=hook_fn) as acq:
 ### acquire some stuff ###

Controlling Micro-Magellan

In addition to launching Micro-Magellan Acquisitions, other aspects of Micro-Magellan can be controlled programatically through Python.

For example, Magellan acquisitions can be created or removed, and have their setting changed:

from pycromanager import Bridge

bridge = Bridge()
#get object representing micro-magellan API
magellan = bridge.get_magellan()

#get the first acquisition appearing in the magellan acquisitions list
acq_settings = magellan.get_acquisition_settings(0)

#add a new one to the list
magellan.create_acquisition_settings()
#remove the one you just added
magellan.remove_acquisition_settings(1)

#Edit the acquisition's settings (i.e. same thing as the controls in the magellan GUI)
#Below is a comprhensive list of all possible settings that be changed. In practice
#only a subset of them will need to be explicitly called

#saving name and path
acq_settings.set_acquisition_name('experiment_1')
acq_settings.set_saving_dir('{}path{}to{}dir'.format(os.sep, os.sep, os.sep))
acq_settings.set_tile_overlap_percent(5)

#time settings
acq_settings.set_time_enabled(True)
acq_settings.set_time_interval(9.1, 's') # 'ms', 's', or 'min'
acq_settings.set_num_time_points(20)

#channel settings
acq_settings.set_channel_group('Channel')
acq_settings.set_use_channel('DAPI', False) #channel_name, use
acq_settings.set_channel_exposure('DAPI', 5.0) #channel_name, exposure in ms
acq_settings.set_channel_z_offset('DAPI', -0.5) #channel_name, offset in um

#space settings
'3d_cuboid', '3d_between_surfaces', '3d_distance_from_surface', '2d_flat', '2d_surface'
acq_settings.set_acquisition_space_type('3d_cuboid')
acq_settings.set_xy_position_source('New Surface 1')
acq_settings.set_z_step(4.5)
acq_settings.set_surface('New Surface 1')
acq_settings.set_bottom_surface('New Surface 1')
acq_settings.set_top_surface('New Surface 1')
acq_settings.set_z_start(4.1)
acq_settings.set_z_end(10.1)

It is also possible to create Grids for acquisition:

magellan = bridge.get_magellan()

#create 3x3 grid centered at 0.0 stage coordinates
magellan.create_grid('New_grid', 3, 3, 0.0, 0.0)

#delete it (and anything else)
magellan.delete_all_grids_and_surfaces()

Or surfaces:

magellan = bridge.get_magellan()

test_surface = magellan.create_surface('Test surface')

#Use the magellan GUI to add interpolation points

#get the z position of the surface at this XY location
z_position = test_surface.get_extrapolated_value(5., 200.)

Reading acquired data

The NDTiff format [https://github.com/micro-manager/NDTiffStorage] is the default saving format of pycromanager Acquisition object.

Images can be loaded individually, or all data can be loaded simulataneously into a memory-mapped dask [https://dask.org/] array, which works like a numpy array and also allows scalable processing of large datasets and viewing data in napari [https://github.com/napari/napari].

Creating a Dataset object

There are two ways to do this, depending on whether the data is part of an in-progress acquisition or not. In the former case:

from pycromanager import Acquisition

with Acquisition('/path/to/saving/dir', 'saving_name') as acq:

 ### send some instructions so something is acquired ######

 dataset = acq.get_dataset()

Alternatively, to open a finished dataset from disk:

from pycromanager import Dataset

#This path is to the top level of the dataset
data_path = '/path/to/data'

dataset = Dataset(data_path)

Reading data

Once opened, individual tiles can be accessed using read_image. This method accepts positions along different dimensions as argument. For example, to get the first image in a z stack, pass in z=0 as an argument.

img, img_metadata = dataset.read_image(z=0, read_metadata=True)

#img is a numpy array, img_metadata is a dict

To determine which axes are available, access the Dataset.axes attribute, which contains a dict with axis names as keys and a list of available indices as values.

If the dataset was created by tiling multiple XY positions, tiles along the axis corresponding to XY positions can be indexed
by their row and column positions:

img = dataset.read_image(row=0, col=1)

Opening data as Dask array

Rather than reading each image individually, all data can be opened at once in a single dask array. Using dask arrays enables all_data to be held in a single memory-mapped array (i.e. the data are not loaded in RAM until they are used, enabing a convenient way to work with data larger than the computer’s memory. Dask arrays also enable https://napari.org/tutorials/applications/dask and allow for code to be prototyped on a small computers and scaled up to clusters without having to rewrite code.

dask_array = dataset.as_array()

#dask array can be used just like numpy array
#take max intenisty projection along axis 0
max_intensity = np.max(all_data[0, 0], axis=0)

#visualize data using napari
with napari.gui_qt():
 v = napari.Viewer()
 v.add_image(dask_array)

If the data was acquired in an XY grid of position (such as Micro-Magellan datasets are), the array can be automatically stitched:

dask_array = dataset.as_array(stitched=True)

with napari.gui_qt():
 v = napari.Viewer()
 v.add_image(dask_array)

Controlling Micro-Manager core

The example below shows how to call the Java bindings for the micro-manager core from Python. Because the core API is discorved at runtime and translated into Python, the easiest way to discover which functions are available is to type core. and type tab to use IPython autocomplete. Alternatively, the documentation for the Java version of the core API can be found here [https://valelab4.ucsf.edu/~MM/doc-2.0.0-gamma/mmcorej/mmcorej/CMMCore.html]. Note that function names will be automatically translated from the camelCase Java convention to the Python convention of underscores between words (e.g. setExposure becomes set_exposure)

"""
This example shows how to use pycromanager to interact with the micro-manager core.
Aside from the setup section, each following section can be run independently
"""
from pycromanager import Bridge
import numpy as np
import matplotlib.pyplot as plt

Setup
#establish communication with Magellan
bridge = Bridge()
#get object representing micro-manager core
core = bridge.get_core()

Calling core functions
exposure = core.get_exposure()

Setting and getting properties
#Here we set a property of the core itself, but same code works for device properties
auto_shutter = core.get_property('Core', 'AutoShutter')
core.set_property('Core', 'AutoShutter', 0)

Acquiring images
#The micro-manager core exposes several mechanisms foor acquiring images. In order to
#not interfere with other pycromanager functionality, this is the one that should be used
core.snap_image()
tagged_image = core.get_tagged_image()
#If using micro-manager multi-camera adapter, use core.getTaggedImage(i), where i is
#the camera index

#pixels by default come out as a 1D array. We can reshape them into an image
pixels = np.reshape(tagged_image.pix,
 newshape=[tagged_image.tags['Height'], tagged_image.tags['Width']])
#plot it
plt.imshow(pixels, cmap='gray')
plt.show()

Micro-manager Java APIs

pycromanager provides a simple way to control the Java/Beanshell APIs of micromanager through Python. In some cases it may be run existing beanshell scripts [https://micro-manager.org/wiki/Example_Beanshell_scripts] with little to no modifcation. The full Java documentation for this API can be found here [https://valelab4.ucsf.edu/~MM/doc-2.0.0-gamma/mmstudio/org/micromanager/Studio.html]. Setting the convert_camel_case option to False here may be especially useful, because it keeps the function names in the Java convention of camelCaseCapitalization rather than automatically converting to the Python convention of names_with_underscores.

from pycromanager import Bridge

bridge = Bridge(convert_camel_case=False)

#get the micro-manager studio object:
studio = bridge.get_studio()

#now use the studio for something

Calling custom Java code

You can also use the Bridge to call your own Java code (such as a micro-manager Java plugin). The construction of an arbitrary Java object is show below using Micro-Magellan as an example:

magellan_api = bridge.construct_java_object('org.micromanager.magellan.api.MagellanAPI')

#now call whatever Java methods the object has

If the constructor takes arguments, they can be passed in using:

java_obj = bridge.construct_java_object('the.full.classpath.to.TheClass', args=['demo', 30])

In either case, calling java_obj. and using IPython autocomplete to discover method names can be useful for development. Note that function names will be automatically translated from the camelCase Java convention to the Python convention of underscores between words (e.g. setExposure becomes set_exposure)

Applications

Have an application you’d like to contribute to this page? Please reach out [https://github.com/micro-manager/pycro-manager/issues/new]!

Contents:

	Timelapse of timelapses and z-stacks

	Using multi_d_acquistion_events

	Fast 3D + time imaging with hardware triggering

	Convert Micromanager multidimensional tiff data into zarr format

	Interactive Microscopy Control with ImJoy

	Denoising acquired images using deep learning

	Computational quantitative phase imaging from focal stacks

	Targeted multi-contrast microscopy using attention-based multi-instance learning for tissue sections

	Auto CyCIF Project

	Closed-loop acquisition and perturbation with pycro-manager

	Timelapse of timelapses and z-stacks
	This notebook shows how to repeatedly acquire a short time series and then a z stack at a set with a set delay in between.

	Using multi_d_acquistion_events
	This notebook shows how to use the multi_d_acquisition_events function to automatically create events to use for acquistion.

	Fast 3D + time imaging with hardware triggering
	This notebook acquires a fast TZYX data series. The camera is run at reduced ROI to achieve higher framerate (here 200 frames per second). Movement of the z stage is “sequenced” to speed up acquisition. The z stage advances to the next position in the sequence when a trigger from the camera is received. This eliminates delays due to software communication.

	Convert Micromanager multidimensional tiff data into zarr format
	This notebook explains how to use pycro-manger to readout the data saved by Micro-manager’s multi-dimensional acquisition and convert it into zarr format. This is useful when the data is large (more than hundreds of GBs). Currently there is no python reader that can directly readout the large multi-dimensional data saved by Micromanger. The Pycro-Manager Java Python Bridge makes this possible.

	Interactive Microscopy Control with ImJoy
	This tutorial notebook shows how you can combine pycro-manager with ImJoy [https://imjoy.io/] which is a web framework for building rich and powerful interactive analysis tools.
Step by step, it shows how you can use ImJoy plugins for acquiring and visualzing images using a dedicated ImJoy plugin for Pycro-Manager in the notebook with snap/live buttons, exposure/binning controls and a full-featured device property browser. The built plugin can be hosted on Github, and use independently outside the Jupyter notebook interface.

	Denoising acquired images using deep learning
	This tutorial demonstrates how to train a deep learning model for image denoising using data aquired by Pycro-Manager. This training is performed on Google Colab, which provides free usage of GPUs in the cloud, so no specialized hardware is required to implement it. The trained model will then be used to denoise images in real time using a Pycro-Manager image processor.

	Computational quantitative phase imaging from focal stacks
	This example shows how to compute 2D quantitative phase images from collected focal stacks, without the need for specialized optics, using computational imaging. Specifically, we will solve and inverse problem based on the Transport of Intensity Equation (TIE) [https://en.wikipedia.org/wiki/Transport-of-intensity_equation]. The inverse problem is implemented in an image processor, to enable on-the-fly quantitative phase imaging during acquisition.

	Targeted multi-contrast microscopy using attention-based multi-instance learning for tissue sections
	This tutorial shows how to use pycro-manager to perform analysis driven targeted multimodal/multiscale acquisition for automated collagen fiber-based biomarker identification. We will acquire brightfield images of a H&E stained cancer histology slide at 4x magnification, identify pathology relevant ROIs using a deep learning model based on the 4x image, and zoom into these ROIs to perform the collagen fiber-specific method of second-harmonic generation (SHG) laser scanning at 20x magnification. This allows for disease-relevant, collagen-specific features to be collected automatically and correlated with the gold standard H&E pathology method. We use Pycro-manager to read/write hardware properties (e.g. camera exposure, lamp intensity, turret position, stage position, etc.), change Micro-Manager hardware property configuration groups, acquire images and access the image data as NumPy array, and perform Z-stack acquisition via multi-dimension acquisition events.

	Auto CyCIF Project
	This notebook shows an implementation of the CycIF [https://www.cycif.org/] Multiplex immunostaining method on several slides in parallel. It utilizes Micro-Magellan as a user interface to define the bounds of each tissue section, calculates the center of the section, and uses this coordinate to drive the stage underneath the robotic pipettor for staining cycles. It also executes autofocus routines at sub-sampled tiles to provide speed increases. It goes through typical 4 color images and sets an executes a simple auto-expose routine and calculates new exposure times. Finally, it takes the saved data and repackages it into a format that the alignment and stitching software, Ashlar, can accept.

	Closed-loop acquisition and perturbation with pycro-manager
	This tutorial shows how to use pycro-manager for a simple closed-loop (CL) experiment in python. CL perturbations are triggered by signals derived from data acquired from the sample itself during a live recording session. Well-designed CL experiments are crucial for systems neuroscience (our research domain), but this example can be adapted for any field. Specifically we perform some canonical image processing (template filtering with 2d gaussian kernel, thresholding, median filtering), then find local peaks, then take a window of pixel values around each peak. We use these pixel values to trigger our arbitrary “stimulus” function which can e.g. change optical settings on the microscope, call a separate program, send a serial port command etc.

Timelapse of timelapses and z-stacks

This notebook shows how to repeatedly acquire a short time series and then a z stack at a set with a set delay in between.

In this example we acquire a time series of duration = 2 seconds and then a z stack parameterized by z_start = -2.5; z_end = 2.5; z_step = 0.25 every subset_interval = 20 seconds for total_duration = 60 seconds. That is, we acquire data subsets containing a 2 second time series and a 5 micrometer z stack every 20 seconds over the span of 60 seconds.

Using pycro-manager this set of acquisition events is encoded as follows:

events = []
for s in range(num_subsets):
 for t in range(num_time_points):
 events.append(
 {
 "axes": {"subset": s, "time": t, "z": 0},
 "z": z_sequence[0],
 "min_start_time": s * subset_interval,
 }
)
 for z in range(num_z_slices):
 events.append(
 {
 "axes": {"subset": s, "time": num_time_points, "z": z},
 "z": z_sequence[z],
 "min_start_time": s * subset_interval,
 }
)

[]:

import numpy as np

from pycromanager import Acquisition, Bridge, multi_d_acquisition_events

Construct java objects

[8]:

bridge = Bridge()
mmc = bridge.get_core()
mmStudio = bridge.get_studio()

Set acquisition parameters

[9]:

Data set parameters
path = r"C:\test"
name = "pycromanager test"
total_duration = 60 # in seconds
subset_interval = 20 # in seconds

z stack parameters
z_start = -2.5
z_end = 2.5
z_step = 0.25
relative = True
sequence = False

time series parameters
duration = 2 # in seconds
framerate = 10

num_subsets = np.ceil(total_duration / subset_interval).astype(np.int)
num_time_points = duration * framerate
z_sequence = np.arange(z_start, z_end + z_step, z_step)
num_z_slices = len(z_sequence)

Prepare for acquisition

[10]:

setup cameras -- this property may change depending on the particular camera used
mmc.set_property("Camera", "Framerate", framerate)

setup z stage
z_stage = mmc.get_focus_device()

if relative:
 z_pos = mmc.get_position(z_stage)

 z_sequence += z_pos

if sequence:
 mmc.set_property(z_stage, "UseSequence", "Yes")

Generate events

[11]:

events = []
for s in range(num_subsets):
 for t in range(num_time_points):
 events.append(
 {
 "axes": {"subset": s, "time": t, "z": 0},
 "z": z_sequence[0],
 "min_start_time": s * subset_interval,
 }
)
 for z in range(num_z_slices):
 events.append(
 {
 "axes": {"subset": s, "time": num_time_points, "z": z},
 "z": z_sequence[z],
 "min_start_time": s * subset_interval,
 }
)

Acquire data

[12]:

with Acquisition(directory=path, name=name) as acq:
 acq.acquire(events)

Using multi_d_acquistion_events

multi_d_acquisition_events is a powerful tool that allows you to specify the acquisition events in a similar manner to using the μmanager gui.

You should also read the Features page for this function.

[1]:

import numpy as np

from pycromanager import multi_d_acquisition_events

Specifying xy positions

To specify the xy positions you need to pass a 2D array with shape (N, 2). However, you may have two separate arrays for x and y. In the next cells are several different ways to construct an approriate 2D array.

[2]:

x = np.arange(0, 5)
y = np.arange(0, -5, -1)

xy = np.hstack([x[:, None], y[:, None]])
xy

[2]:

array([[0, 0],
 [1, -1],
 [2, -2],
 [3, -3],
 [4, -4]])

[3]:

multi_d_acquisition_events(xy_positions=xy)

[3]:

[{'axes': {'position': 0}, 'x': 0, 'y': 0},
 {'axes': {'position': 1}, 'x': 1, 'y': -1},
 {'axes': {'position': 2}, 'x': 2, 'y': -2},
 {'axes': {'position': 3}, 'x': 3, 'y': -3},
 {'axes': {'position': 4}, 'x': 4, 'y': -4}]

Adding z positions

Single absolute z position

To specify a single z value for each position use the xyz_positions argument

[4]:

z = np.arange(0, 5)
xyz = np.hstack([x[:, None], y[:, None], z[:, None]])
multi_d_acquisition_events(xyz_positions=xyz)

[4]:

[{'axes': {'position': 0, 'z': 0}, 'x': 0, 'y': 0, 'z': 0},
 {'axes': {'position': 1, 'z': 0}, 'x': 1, 'y': -1, 'z': 1},
 {'axes': {'position': 2, 'z': 0}, 'x': 2, 'y': -2, 'z': 2},
 {'axes': {'position': 3, 'z': 0}, 'x': 3, 'y': -3, 'z': 3},
 {'axes': {'position': 4, 'z': 0}, 'x': 4, 'y': -4, 'z': 4}]

Relative z positions

Relative to each point

[6]:

multi_d_acquisition_events(xyz_positions=xyz, z_start=-1, z_end=1, z_step=1)

[6]:

[{'axes': {'position': 0, 'z': 0}, 'x': 0, 'y': 0, 'z': -1},
 {'axes': {'position': 0, 'z': 1}, 'x': 0, 'y': 0, 'z': 0},
 {'axes': {'position': 0, 'z': 2}, 'x': 0, 'y': 0, 'z': 1},
 {'axes': {'position': 1, 'z': 0}, 'x': 1, 'y': -1, 'z': 0},
 {'axes': {'position': 1, 'z': 1}, 'x': 1, 'y': -1, 'z': 1},
 {'axes': {'position': 1, 'z': 2}, 'x': 1, 'y': -1, 'z': 2},
 {'axes': {'position': 2, 'z': 0}, 'x': 2, 'y': -2, 'z': 1},
 {'axes': {'position': 2, 'z': 1}, 'x': 2, 'y': -2, 'z': 2},
 {'axes': {'position': 2, 'z': 2}, 'x': 2, 'y': -2, 'z': 3},
 {'axes': {'position': 3, 'z': 0}, 'x': 3, 'y': -3, 'z': 2},
 {'axes': {'position': 3, 'z': 1}, 'x': 3, 'y': -3, 'z': 3},
 {'axes': {'position': 3, 'z': 2}, 'x': 3, 'y': -3, 'z': 4},
 {'axes': {'position': 4, 'z': 0}, 'x': 4, 'y': -4, 'z': 3},
 {'axes': {'position': 4, 'z': 1}, 'x': 4, 'y': -4, 'z': 4},
 {'axes': {'position': 4, 'z': 2}, 'x': 4, 'y': -4, 'z': 5}]

A range that is shared by all points

[7]:

multi_d_acquisition_events(xy_positions=xy, z_start=-1, z_end=1, z_step=1)

[7]:

[{'axes': {'position': 0, 'z': 0}, 'x': 0, 'y': 0, 'z': -1},
 {'axes': {'position': 0, 'z': 1}, 'x': 0, 'y': 0, 'z': 0},
 {'axes': {'position': 0, 'z': 2}, 'x': 0, 'y': 0, 'z': 1},
 {'axes': {'position': 1, 'z': 0}, 'x': 1, 'y': -1, 'z': -1},
 {'axes': {'position': 1, 'z': 1}, 'x': 1, 'y': -1, 'z': 0},
 {'axes': {'position': 1, 'z': 2}, 'x': 1, 'y': -1, 'z': 1},
 {'axes': {'position': 2, 'z': 0}, 'x': 2, 'y': -2, 'z': -1},
 {'axes': {'position': 2, 'z': 1}, 'x': 2, 'y': -2, 'z': 0},
 {'axes': {'position': 2, 'z': 2}, 'x': 2, 'y': -2, 'z': 1},
 {'axes': {'position': 3, 'z': 0}, 'x': 3, 'y': -3, 'z': -1},
 {'axes': {'position': 3, 'z': 1}, 'x': 3, 'y': -3, 'z': 0},
 {'axes': {'position': 3, 'z': 2}, 'x': 3, 'y': -3, 'z': 1},
 {'axes': {'position': 4, 'z': 0}, 'x': 4, 'y': -4, 'z': -1},
 {'axes': {'position': 4, 'z': 1}, 'x': 4, 'y': -4, 'z': 0},
 {'axes': {'position': 4, 'z': 2}, 'x': 4, 'y': -4, 'z': 1}]

Time points

You can specify the number of time points and the delay between them. The min_start_time in the events makes it so that there is a garunteed delay between subsequent acquisition events.

[8]:

multi_d_acquisition_events(num_time_points=5, time_interval_s=10)

[8]:

[{'axes': {'time': 0}, 'min_start_time': 0},
 {'axes': {'time': 1}, 'min_start_time': 10},
 {'axes': {'time': 2}, 'min_start_time': 20},
 {'axes': {'time': 3}, 'min_start_time': 30},
 {'axes': {'time': 4}, 'min_start_time': 40}]

When combining a time series with a position series we can specify the order using teh order argument which has a default order of:

	time

	position

	channel

	z

[9]:

xy_small = xy[:2, :]
multi_d_acquisition_events(
 num_time_points=2,
 time_interval_s=10,
 xy_positions=xy_small,
 order="ptz",
 z_start=-1,
 z_end=0,
 z_step=1,
)

[9]:

[{'axes': {'position': 0, 'time': 0, 'z': 0},
 'x': 0,
 'y': 0,
 'min_start_time': 0,
 'z': -1},
 {'axes': {'position': 0, 'time': 0, 'z': 1},
 'x': 0,
 'y': 0,
 'min_start_time': 0,
 'z': 0},
 {'axes': {'position': 0, 'time': 1, 'z': 0},
 'x': 0,
 'y': 0,
 'min_start_time': 10,
 'z': -1},
 {'axes': {'position': 0, 'time': 1, 'z': 1},
 'x': 0,
 'y': 0,
 'min_start_time': 10,
 'z': 0},
 {'axes': {'position': 1, 'time': 0, 'z': 0},
 'x': 1,
 'y': -1,
 'min_start_time': 0,
 'z': -1},
 {'axes': {'position': 1, 'time': 0, 'z': 1},
 'x': 1,
 'y': -1,
 'min_start_time': 0,
 'z': 0},
 {'axes': {'position': 1, 'time': 1, 'z': 0},
 'x': 1,
 'y': -1,
 'min_start_time': 10,
 'z': -1},
 {'axes': {'position': 1, 'time': 1, 'z': 1},
 'x': 1,
 'y': -1,
 'min_start_time': 10,
 'z': 0}]

Channels

The channel_group, channels and channel_exposure_ms arguments can be used to control what channels are collected.

[10]:

channel_group = "your-channel-group"
channels = ["BF", "GFP"]
channel_exposures_ms = [15.5, 200]
multi_d_acquisition_events(
 xy_positions=xy,
 channels=channels,
 channel_group=channel_group,
 channel_exposures_ms=channel_exposures_ms,
)

[10]:

[{'axes': {'position': 0},
 'x': 0,
 'y': 0,
 'channel': {'group': 'your-channel-group', 'config': 'BF'},
 'exposure': 0},
 {'axes': {'position': 0},
 'x': 0,
 'y': 0,
 'channel': {'group': 'your-channel-group', 'config': 'GFP'},
 'exposure': 1},
 {'axes': {'position': 1},
 'x': 1,
 'y': -1,
 'channel': {'group': 'your-channel-group', 'config': 'BF'},
 'exposure': 0},
 {'axes': {'position': 1},
 'x': 1,
 'y': -1,
 'channel': {'group': 'your-channel-group', 'config': 'GFP'},
 'exposure': 1},
 {'axes': {'position': 2},
 'x': 2,
 'y': -2,
 'channel': {'group': 'your-channel-group', 'config': 'BF'},
 'exposure': 0},
 {'axes': {'position': 2},
 'x': 2,
 'y': -2,
 'channel': {'group': 'your-channel-group', 'config': 'GFP'},
 'exposure': 1},
 {'axes': {'position': 3},
 'x': 3,
 'y': -3,
 'channel': {'group': 'your-channel-group', 'config': 'BF'},
 'exposure': 0},
 {'axes': {'position': 3},
 'x': 3,
 'y': -3,
 'channel': {'group': 'your-channel-group', 'config': 'GFP'},
 'exposure': 1},
 {'axes': {'position': 4},
 'x': 4,
 'y': -4,
 'channel': {'group': 'your-channel-group', 'config': 'BF'},
 'exposure': 0},
 {'axes': {'position': 4},
 'x': 4,
 'y': -4,
 'channel': {'group': 'your-channel-group', 'config': 'GFP'},
 'exposure': 1}]

[]:

Fast 3D + time imaging with hardware triggering

This notebook acquires a fast TZYX data series.

The camera is run at reduced ROI to achieve higher framerate (here 200 frames per second).

Movement of the z stage is “sequenced” to speed up acquisition. The z stage advances to the next position in the sequence when a trigger from the camera is received. This eliminates delays due to software communication.

Here a piezo z stage from ASI Imaging is used. The stage is put in “Fast Sequencing” mode such that the position sequence is repeated if a trigger is received after the last position in the sequence has been reached. In this way the camera is run in “burst mode” for multiple z stack acquisitions without having to resend the sequence buffer.

A custom z position sequence representing a triangle waveform is used. This means that the stage will move from start_end_pos = -2.5 to mid_pos = 2.5 in steps of step_size = 0.25 and then back from mid_pos to start_end_pos in steps of -step_size. This set of stage positions avoids the large jump from the end of the sequence back to the beginning of the sequence which may take more time to complete than a single step and may disturb the sample.

Using pycro-manager this set of acquisition events is encoded as follows:

events = []
z_idx_ = z_idx.copy()
for i in range(num_time_points):
 for j in z_idx_:
 events.append({'axes': {'time':i, 'z': j}})
 z_idx_.reverse()

[]:

import numpy as np

from pycromanager import Acquisition, Bridge

[]:

def upload_piezo_sequence(bridge, start_end_pos, mid_pos, step_size, relative=True):
 """
 Upload a triangle waveform of z_stage positions and set the z_stage in UseFastSequence mode

 :param bridge: pycro-manager java bridge
 :type bridge: pycromanager.core.Bridge
 :param start_end_pos: start and end position of triangle waveform
 :type start_end_pos: float
 :param mid_pos: mid position of the triangle waveform
 :type mid_pos: float
 :param step_size: z_stage step size
 :type step_size: float
 :param relative: set to False if given start_end_pos and mid_pos are absolute

 :return: current z position and absolute positions of triangle waveform
 """

 mmc = bridge.get_core()

 z_stage = mmc.get_focus_device()

 pos_sequence = np.hstack(
 (
 np.arange(start_end_pos, mid_pos + step_size, step_size),
 np.arange(mid_pos, start_end_pos - step_size, -step_size),
)
)

 z_pos = 0
 if relative:
 z_pos = mmc.get_position(z_stage)
 pos_sequence += z_pos

 # construct java object
 positionJ = bridge.construct_java_object("mmcorej.DoubleVector")
 for i in pos_sequence:
 positionJ.add(float(i))

 # send sequence to stage
 mmc.set_property(z_stage, "UseSequence", "Yes")
 mmc.set_property(z_stage, "UseFastSequence", "No")
 mmc.load_stage_sequence(z_stage, positionJ)
 mmc.set_property(z_stage, "UseFastSequence", "Armed")

 return z_pos, pos_sequence

Construct java objects

[9]:

bridge = Bridge()
mmc = bridge.get_core()
mmStudio = bridge.get_studio()

Set acquisition parameters

[10]:

Data set parameters
path = r"C:\test"
name = "pycromanager test"

z stack parameters
start_end_pos = -2.5
mid_pos = 2.5
step_size = 0.25
relative = True

time series parameters
duration = 2 # in seconds
exposure_time = 3 # in milliseconds
framerate = 200

FOV parameters
ROI = [924, 770, 616, 514]

num_z_positions = int(abs(mid_pos - start_end_pos) / step_size + 1)
z_idx = list(range(num_z_positions))
num_time_points = np.ceil(duration * framerate / num_z_positions).astype(np.int)

Prepare for acquisition

[11]:

setup cameras
mmc.set_exposure(exposure_time)
mmc.set_roi(*ROI)
mmc.set_property("Camera", "Framerate", framerate)

setup z stage
z_stage = mmc.get_focus_device()
z_pos, pos_sequence = upload_piezo_sequence(
 bridge, start_end_pos, mid_pos, step_size, relative
)
num_z_positions = len(pos_sequence)

move to first position
mmc.set_position(z_stage, pos_sequence[0])

Generate events

[12]:

events = []
z_idx_ = z_idx.copy()
for i in range(num_time_points):
 for j in z_idx_:
 events.append({"axes": {"time": i, "z": j}})
 z_idx_.reverse()

Acquire data

[13]:

with Acquisition(directory=path, name=name) as acq:
 acq.acquire(events)

Reset

[14]:

turn off sequencing
mmc.set_property(z_stage, "UseFastSequence", "No")
mmc.set_property(z_stage, "UseSequence", "No")

move back to initial position
mmc.set_position(z_stage, z_pos)

Convert Micromanager multidimensional tiff data into zarr format

This notebook explains how to use Pycromanger to readout the multi-dimensional data saved by Micro-manager and convert it into zarr format.

This is useful when the multi-dimensional data is large (more than hundreds of GBs). Currently there is no python reader that can directly readout the large multi-dimensional data saved by Micromanger. Therefore, Pycromanger can be used as a reader to bridge this gap.

To run this notebook, first open Micromanger, then load the multi-dimensional data into Micromanger using virtual stack. Pycromanger will then be able to read out that data via a Java-Python bridge.

After the data is converted to zarr, one can easier load the data into Python and perform downsteam processing.

[19]:

import numpy as np
import zarr

from pycromanager import Bridge

Construct java objects

[20]:

bridge = Bridge()
mm = bridge.get_studio()
ds = mm.displays().get_active_data_viewer().get_data_provider()

Set parameters

[24]:

nb_tp = 500 # number of time points
nb_ch = 2 # number of channels
nz = 600 # number of z slices
ny = 2048 # number of y pixels in each image
nx = 2048 # number of x pixels in each image
save_to = r"D:\zarr_data\data.zarr" # save to this directory

Create Zarr folder

[22]:

if not os.path.isdir(save_to):
 # create new zarr folder
 root = zarr.open(save_to, mode="w")
 ch0 = root.zeros(
 "ch0", shape=(nb_tp, nz, ny, nx), chunks=(1, 64, 512, 512), dtype="i2"
)
 ch1 = root.zeros(
 "ch1", shape=(nb_ch, nz, ny, nx), chunks=(1, 64, 512, 512), dtype="i2"
)
 print(root.tree())

[23]:

open the zarr folder to save data into it
root = zarr.open(save_to, mode="rw")
ch0 = root["ch0"]
ch1 = root["ch1"]

Readout data from MM and save to zarr

[]:

data_stack = np.zeros((nz, ny, nx)) # initialize nparray to store a z-stack
for t in range(nb_tp):
 for ch in range(nb_ch):
 for z in range(nb_slices):
 coords_string = "t={0},p=0,c={1},z={2}".format(t, ch, z)
 coords = mm.data().create_coords(coords_string)
 mimg = ds.get_image(coords)
 data_stack[z, :, :] = np.reshape(
 mimg.get_raw_pixels(), newshape=[mimg.get_height(), mimg.get_width()]
)
 if ch == 0:
 ch0[t, :, :, :] = data_stack
 else:
 ch1[t, :, :, :] = data_stack

Interactive Microscopy Control with ImJoy

Author: Wei OUYANG [https://oeway.github.io/]

ImJoy [https://imjoy.io] is a web framework for building interactive analysis tools. You can also use it to build easy-to-use and interactive data acquisition tool together with pycro-manager.

In this tutorial notebook, we will go through the steps for using ImJoy plugins with Pycro-Manager to control your microscope interactively.

Here is a outline of this tutorial: 1. Preparation 1. Acquire an image and display it with matplotlib 1. Acquire and display images continuously with matplotlib 1. Build your first ImJoy plugin 1. Snap an image in the ImJoy plugin 1. Visualize the image with the itk-vtk-viewer plugin 1. Use a dedicated UI plugin with Pycro-Manager 1. Deploy your plugin to Github and share it 1. Additional Resources

Preparation

You will be able to follow this tutorial in a local installation of Jupyter notebook. To use Pycro-Manager(which connects to Micro-Manager), you need to run the jupyter notebook server (typically with the jupyter notebook command) on the computer with Micro-Manager.

Importantly, Pycro-Manager exposes full access of your microscope to the python scripting interface, please be careful that some commands (e.g. moving the stage) may damage your hardware. Although this tutorial only involves camera control which is safe, we still recommend to disconnect your hardware and start Micro-Manager with the simulated demo devices for exploration, and only connect the hardware when you fully understand the scripts.

	Install Pycro-Manager, ImJoy and ImJoy Jupyter Extension [https://github.com/imjoy-team/imjoy-jupyter-extension] by run pip install pycromanager imjoy imjoy-jupyter-extension, then start or restart your Jupyter notebook server by using jupyter notebook command.

	Create an empty notebook, or download and run this one [https://github.com/micro-manager/pycro-manager/blob/master/docs/source/pycro_manager_imjoy_tutorial.ipynb]. Make sure you see an ImJoy icon in the toolbar in opened notebooks.

	If you don’t have Micro-Manager installed, download the lastest version of micro-manager 2.0 [https://micro-manager.org/wiki/Micro-Manager_Nightly_Builds]

	Run Micro-Manager, select tools-options, and check the box that says Run server on port 4827 (you only need to do this once)

[]:

if you don't see an ImJoy icon (blue) in the toolbar, run this cell
!pip install -U pycromanager imjoy imjoy-jupyter-extension

And, restart your jupyter notebook after running the above command

To quickly verify whether you have everything ready, you should see something like 'MMCore version 10.1.0' without error after running the following cell.

[15]:

from imjoy import api

from pycromanager import Bridge

bridge = Bridge()
core = bridge.get_core()
core.get_version_info()

[15]:

'MMCore version 10.1.0'

Acquire an image and display it with matplotlib

By calling core.snap_image() we can control micromanager to acquire image and use core.get_tagged_image() to fetch the image data.

In a notebook, we can use matplotlib function plt.imshow to visualize the image.

[16]:

%matplotlib inline
import numpy as np
from matplotlib import pyplot as plt

def snap_image():
 # acquire an image and display it
 core.snap_image()
 tagged_image = core.get_tagged_image()
 # get the pixels in numpy array and reshape it according to its height and width
 image_array = np.reshape(
 tagged_image.pix,
 newshape=[-1, tagged_image.tags["Height"], tagged_image.tags["Width"]],
)
 # for display, we can scale the image into the range of 0~255
 image_array = (image_array / image_array.max() * 255).astype("uint8")
 # return the first channel if multiple exists
 return image_array[0, :, :]

plt.imshow(snap_image())

[16]:

<matplotlib.image.AxesImage at 0x11ad03fd0>

[image: _images/pycro_manager_imjoy_tutorial_6_1.png]

Acquire and display images continuously

Since we are doing microscopy imaging with the microscope, it’s important to be able to see a live stream, for example, for finding a field of view.

Jupyter notebook has little support for visualizing real-time data itself, but we can try to achieve live update by repeatitively clear the plot and draw again.

[17]:

from IPython.display import clear_output

for i in range(5):
 clear_output(wait=True)
 plt.figure()
 plt.title(i)
 plt.imshow(snap_image())
 plt.show()

[image: _images/pycro_manager_imjoy_tutorial_8_0.png]

While we can see the live stream, it provides litte interactivity, for example, if we want to do contrast stretching, we will have to stop the stream and change the code. ipywidgets [https://ipywidgets.readthedocs.io/en/stable/] is a Jupyter extension that designed for adding basic control elements (e.g. buttons and sliders) to control python code execution. There are also other similar extensions such as mpl-interactions [https://mpl-interactions.readthedocs.io/en/latest/], and you can
find more in widgets [https://jupyter.org/widgets] (thanks to @ianhi).

In addition to these existing options, we built imjoy-jupyter-extension [https://github.com/imjoy-team/imjoy-jupyter-extension] that utilizes the ImJoy framework to introduce interactivity to Jupyter notebooks. It allows Python code to interact web UI directly without making dedicated Jupyter widgets in Python. It simplify the development of UI widgets, improve code reuse, and users can simply refer to an URL to extend the UI.

In the following section, we will show you how we can achieve better interactivity by building an ImJoy plugin.

Build your first ImJoy plugin

Let’s start by making a “hello world” plugin example with ImJoy.

An ImJoy plugin is a class defines at least two functions setup and run. In the setup function we put preparation or initialization code and the run function is an entrypoint when the user starts the plugin. As an example, we do nothing in the setup function and popup a hello world message in the run function.

Importantly, you need to export your plugin by running api.export(ImJoyPlugin()) to register the plugin to the ImJoy core (running in the browser with the notebook page).

Now run the following cell.

If you see a popup message saying “hello world”, congrats that you have build your first ImJoy plugin!

[]:

from imjoy import api

class ImJoyPlugin:
 """Defines an ImJoy plugin"""

 async def setup(self):
 """for initialization"""
 pass

 async def run(self, ctx):
 """called when the user run this plugin"""

 # show a popup message
 await api.alert("hello world")

register the plugin to the imjoy core
api.export(ImJoyPlugin())

Note: if the async and await keywords are new to you, you may want to learn about an imporant programing style called “asynchronous programming”. It’s basically a cheap way to achieve parallelizatin in a single thread, and Python3 provides asyncio API [https://docs.python.org/3/library/asyncio-task.html] for it. With the async/await syntax, you can write async code as you usually do with your other synchronous code.

Don’t worry if you don’t fully understand asynchronous programming. For now you can treat it the same as regular python programming, but remember the following simplified rules: 1. it is recommended to add await before every ImJoy api call except api.export, e.g.: do await api.alert("hello"). 2. if you used await in a function, then you have to also add async def to define the function.

Snap an image in the ImJoy plugin

Now let’s define a function for acquire images with Pycro-Manager and call it snap_image(). Add this function into the plugin class and use it in the run function.

Run the fullowing cell, you should see a message if you acquired an image.

[]:

import numpy as np
from imjoy import api

from pycromanager import Bridge

class MyMicroscope:
 """Defines a Microscope plugin"""

 async def setup(self):
 """initialize the pycro-manager bridge"""
 bridge = Bridge()
 self._core = bridge.get_core()

 def snap_image(self):
 """snape an image with the pycro-manager bridge and return it as a numpy array"""
 self._core.snap_image()
 tagged_image = self._core.get_tagged_image()
 # get the pixels in numpy array and reshape it according to its height and width
 image_array = np.reshape(
 tagged_image.pix,
 newshape=[-1, tagged_image.tags["Height"], tagged_image.tags["Width"]],
)
 # for display, we can scale the image into the range of 0~255
 image_array = (image_array / image_array.max() * 255).astype("uint8")
 return image_array

 async def run(self, ctx):
 """acquire one image and notify the user"""
 img = self.snap_image()
 # show a popup message
 await api.alert(
 "Acquired an image (size={}) with Pycro-Manager".format(img.shape)
)

register the plugin to the imjoy core
api.export(MyMicroscope())

Visualize the image with the itk-vtk-viewer plugin

To show the images, we can use another ImJoy plugin called itk-vtk-viewer which provide rich featuers including color map, contrast stretching, scaling. It can be used directly via this link: https://oeway.github.io/itk-vtk-viewer/ as standalone web app, but also available as an ImJoy plugin.

To use it, you can run viewer = await api.showDialog(src="https://oeway.github.io/itk-vtk-viewer/") to create a viewer. The returned viewer object contains a set of API functions exported by the itk-vtk-viewer plugin, and we will call viewer.imshow() for displaying images where imshow is one of the API functions.

Note that we need to add await before api.showDialog, but also all the returned API functions including imshow().

In the following plugin, we call snape_image and viewer.imshow in a for loop inside the run function, to continuously display the image.

[20]:

import numpy as np
from imjoy import api

from pycromanager import Bridge

class MyMicroscope:
 """Defines a Microscope plugin"""

 async def setup(self):
 """initialize the pycro-manager bridge"""
 bridge = Bridge()
 self._core = bridge.get_core()

 def snap_image(self):
 """snape an image with the pycro-manager bridge and return it as a numpy array"""
 self._core.snap_image()
 image_array = self._core.get_image().reshape(512, 512)
 # for display, we can scale the image into the range of 0~255
 image_array = (image_array / image_array.max() * 255).astype("uint8")
 return image_array

 async def run(self, ctx):
 """acquire 100 images and show them with itk-vtk-viewer"""
 viewer = await api.createWindow(src="https://oeway.github.io/itk-vtk-viewer/")
 api.showMessage("Acquiring 100 images")
 for i in range(100):
 img = self.snap_image()
 await viewer.imshow(img)
 api.showMessage("Done.")

api.export(MyMicroscope())

[20]:

[image: _images/pycro_manager_imjoy_tutorial_15_0.png]

The itk-vtk-viewer plugin provides rich features for inspecting the displayed image, but it does not provide features to control the microscope.

Use a dedicated UI plugin with Pycro-Manager

ImJoy allows developers build custom plugins and can be easily used later in another plugin. For example, we can add buttons to snap image, provide options to change exposure in a custom UI plugin.

For working with Pycro-Manager, we made a dedicated UI plugin called “PycroCam” which can be referred via https://gist.github.com/oeway/f59c1d1c49c94a831e5e21ba4c6111dd. If you are interested in how to make such a plugin, cick the link and you will see the plugin source code in HTML, Javascript and CSS.

For this tutorial, we will focuse on using such a plugin with Pycro-Manager and it’s as easy as calling pycrocam = await api.createWindow(src="https://gist.github.com/oeway/f59c1d1c49c94a831e5e21ba4c6111dd", data={...}).

Slightly different from the above example where we create a window via api.createWindow and we use the returned viewer object to access API functions such as imshow. In this example, we will directly pass a set of Micro-Manager core api functions to the PycroCam plugin so we can directly control the microscope within the plugin.

In the following run function, you will see that we first construct a dictionary (named mmcore_api) with a set of functions required by the plugin including snapImage, getImage and setExposure. Then we pass the dictionary into api.createWindow() as a keyword data, specifically, data={'mmcore': mmcore_api}.

Run the following cell, and you will see the PycroCam UI with snap and live buttons, set exposure and binning. In addition you can click the “Device Properties” which will popup a device property browser. Just like the one in Micro-Manager itself, you can change almost any property with that.

[21]:

import time

import numpy as np
from imjoy import api

from pycromanager import Bridge

class MyMicroscope:
 async def setup(self):
 bridge = Bridge()
 self._core = bridge.get_core()
 exposure = self._core.get_exposure()
 api.showMessage("MMcore loaded, exposure: " + str(exposure))

 def snap_image(self):
 if self._core.is_sequence_running():
 self._core.stop_sequence_acquisition()
 self._core.snap_image()
 return self.get_image()

 def get_image(self):
 # we can also check remaining with getRemainingImageCount()
 tagged_image = self._core.get_tagged_image()
 image_array = np.reshape(
 tagged_image.pix,
 newshape=[-1, tagged_image.tags["Height"], tagged_image.tags["Width"]],
)
 image_array = (image_array / image_array.max() * 255).astype("uint8")
 return image_array

 def get_device_properties(self):
 core = self._core
 devices = core.get_loaded_devices()
 devices = [devices.get(i) for i in range(devices.size())]
 device_items = []
 for device in devices:
 names = core.get_device_property_names(device)
 props = [names.get(i) for i in range(names.size())]
 property_items = []
 for prop in props:
 value = core.get_property(device, prop)
 is_read_only = core.is_property_read_only(device, prop)
 if core.has_property_limits(device, prop):
 lower = core.get_property_lower_limit(device, prop)
 upper = core.get_property_upper_limit(device, prop)
 allowed = {
 "type": "range",
 "min": lower,
 "max": upper,
 "readOnly": is_read_only,
 }
 else:
 allowed = core.get_allowed_property_values(device, prop)
 allowed = {
 "type": "enum",
 "options": [allowed.get(i) for i in range(allowed.size())],
 "readOnly": is_read_only,
 }
 property_items.append(
 {"device": device, "name": prop, "value": value, "allowed": allowed}
)
 # print('===>', device, prop, value, allowed)
 if len(property_items) > 0:
 device_items.append(
 {
 "name": device,
 "value": "{} properties".format(len(props)),
 "items": property_items,
 }
)
 return device_items

 async def run(self, ctx):
 mmcore_api = {
 "_rintf": True,
 "snapImage": self.snap_image,
 "getImage": self.get_image,
 "getDeviceProperties": self.get_device_properties,
 "getCameraDevice": self._core.get_camera_device,
 "setCameraDevice": self._core.set_camera_device,
 "startContinuousSequenceAcquisition": self._core.start_continuous_sequence_acquisition,
 "stopSequenceAcquisition": self._core.stop_sequence_acquisition,
 "setExposure": self._core.set_exposure,
 "getExposure": self._core.get_exposure,
 "setProperty": self._core.set_property,
 "getProperty": self._core.get_property,
 }
 viewer = await api.createWindow(
 src="https://gist.github.com/oeway/f59c1d1c49c94a831e5e21ba4c6111dd",
 data={"mmcore": mmcore_api},
)

api.export(MyMicroscope())

[21]:

[image: _images/pycro_manager_imjoy_tutorial_17_0.png]

Deploy your plugin to Github and share it

Jupyter notebook serves as a good tool for learning, developing and debuging ImJoy plugins with PycroManager. Once the development is done, for users who just want to use the tool, it’s not helpful to show all the code and documentation with a notebook. ImJoy plugins are disgned to be easily deployed and shared with others.

We can basically copy and paste the above cell into a text file, add additional fields such as plugin name and dependent libraries, save and upload to Github or Gist, then we can obtain a URL and share with others.

Here are the steps:

	Create an empty text file named PycroManagerControl.imjoy.html(optionally, replace PycroManagerControl into any other name you like), then open it using your favorate code or text editor.

	Copy and paste the following config block with into the file:

<config lang="json">
{
 "name": "PycroManagerControl",
 "type": "native-python",
 "version": "0.1.0",
 "description": "Microscope control with PycroManager",
 "tags": [],
 "ui": "",
 "cover": "",
 "inputs": null,
 "outputs": null,
 "flags": [],
 "icon": "extension",
 "api_version": "0.1.8",
 "env": "",
 "permissions": [],
 "requirements": ["pycromanager", "numpy"],
 "dependencies": []
}
</config>

This config block in JSON format provides meta information for the plugin. We can leave most fields empty but it’s important to set the name, type (must be native-python), description, and requirements. The requirements is basically pip install commands (the same as a requirements.txt file).

	Add an empty script block after the <config> block, and fill in by copy and paste the Python code of the above cell:

<script lang="python">

copy and paste your plugin code here

</script>

	Now save the file and make sure the file name ends with extension .imjoy.html.

	Optionally, we an test the plugin in ImJoy. Go to https://imjoy.io/#/app to start ImJoy, click the 🚀 located in the upper-right corner, click “Add Jupyter Engine”, in the popup dialog, copy and paste your jupyter server url (must contains token, e.g.: http://localhost:8888/?token=caac2d7f2e8e0...ad871fe) to the dialog and click “CONNECT TO JUPYTER”. Drag and drop your ImJoy plugin file into the window and you will see the plugin loaded into a code editor. Now click the play button to run
the plugin. You should be able to see the same window as you see in the Jupyter notebook. If necessary you can also modify the code and run again.

	Once you are satisfied with your plugin, upload it to project repo on Github, or Gist [https://gist.github.com/] which is ideal for saving ImJoy plugin files. You will get a URL after you save or upload the plugin file. For example: https://gist.github.com/oeway/f2564258a5a72fa8819e30fda34f030d

	To share the plugin with others, you can directly send the source code url generated in step 6, or simply construct a one click plugin URL by adding your plugin URL after https://imjoy.io/#/app?plugin=. For example: https://imjoy.io/#/app?plugin=https://gist.github.com/oeway/f2564258a5a72fa8819e30fda34f030d. Note: any one get the link can only connect to their own Jupyter notebook server and Micro-Manager.

Question and additional resources

If you have any question, feel free to reach out on image.sc: https://forum.image.sc/tag/imjoy

For more detailed information about ImJoy and plugin development with ImJoy, please consult https://imjoy.io/docs/.

We also made a similar tutorial for the Python binding of Micro-Manager (named pymmcore [https://pypi.org/project/pymmcore/]), see here [https://gist.github.com/oeway/d40d68bda5f8401f88a56c67bafd1791]. This is useful if you don’t need the java interface or you want to run multiple instances of Micro-Manager.

Denoising acquired images using deep learning

Copy this notebook into a directory in your Google drive.

In this tutorial we will create a deep learning denoising model trained on data aquired by Pycro-Manager on your microscope. We will then used this denoising model to denoise images collected by Pycro-Manager in real time.

We will be running image aquisition and inference locally, and train on a Google Colab GPU instance, though if you have a fairly powerful GPU locally feel free to train locally.

The deep learning model used in this tutorial is N2V [https://github.com/juglab/n2v], which allows us to create a denoising algorithm without groud truth images by training on noisy images without clean targets. Check out how it works here [https://ieeexplore.ieee.org/document/9098336] and here [https://arxiv.org/pdf/1811.10980.pdf].

Please install Pycro-Manager [https://pycro-manager.readthedocs.io/en/latest/setup.html] locally before running this Colab notebook.

Written by Ryan Mei [https://github.com/rmeit], Henry Pinkard [https://github.com/henrypinkard]

Part 1: Connect to a local runtime

Open this notebook on your local computer. If you have not yet, install Pycro-Manager:

[2]:

!pip install pycromanager

Open micromanager and connect your microscope to your computer.

 Computational quantitative phase imaging from focal stacks

Computational quantitative phase imaging from focal stacks

In this tutorial we will use Pycro-Manager to compute 2D quantitative phase images from collected focal stacks, without the need for specialized optics, by using computational imaging. Specifically, we will solve and inverse problem based on the Transport of Intensity Equation (TIE) [https://en.wikipedia.org/wiki/Transport-of-intensity_equation]. There are multiple ways of setting up and solving this inverse problem. In this example we will demonstrate how to solve it using
exponentially-spaced Z-planes and a Gaussian process regression solver [https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-22-9-10661&id=284196].

The inverse problem solving code used in this notebook is a translation of Matlab code that can be found here [https://drive.google.com/a/berkeley.edu/file/d/0B_HY5ZswCff-cU8zWnFnZ3hIa1k/view?usp=sharing]

Part 1: Setup

Create that functions that will be used to solve the inverse problems

[1]:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from numpy import fft
from scipy.io import loadmat

import tensorflow_probability as tfp
from scipy.optimize import fsolve

"""
intensities: defocused intensity stack, np array
z_vec: positions of images
lambda: wavelength
ps: pixel size
zfocus1: focal plane
Nsl: # of samples in Fourier space
"""

def GP_TIE(Ividmeas, z_vec, lambd, ps, zfocus, Nsl=100, eps1=1, eps2=1, reflect=False):

 # code expects 2D arrays
 if len(z_vec.shape) == 1:
 z_vec = z_vec[:, None]
 if isinstance(ps, float):
 ps = np.array([[ps]])
 elif len(ps.shape) == 1:
 ps = ps[:, None]

 RePhase1 = RunGaussianProcess(
 Ividmeas, zfocus, z_vec, lambd, ps, Nsl, eps1, eps2, reflect
)
 RePhase1 = RePhase1 / np.mean(Ividmeas)
 # print("rephase1: ", RePhase1)
 # print("norm: ", np.mean(Ividmeas))
 return RePhase1

def RunGaussianProcess(Ividmeas, zfocus, z_vec, lambd, ps, Nsl, eps1, eps2, reflect):

 (Nx, Ny, Nz) = Ividmeas.shape
 I0 = Ividmeas[:, :, zfocus]
 zfocus = z_vec[zfocus]

 ### Calculate S_c ###

 # why is dz=1
 freqs = CalFrequency(Ividmeas[:, :, 0], lambd, ps, 1)
 max_freq = np.max(freqs)
 max_freq = np.sqrt(max_freq / (lambd / 2))
 freq_cutoff = np.linspace(0, 1, Nsl) * max_freq
 freq_cutoff = freq_cutoff ** 2 * lambd / 2

 SigmafStack = np.zeros((Nsl, 1))
 SigmanStack = np.zeros((Nsl, 1))
 SigmalStack = np.zeros((Nsl, 1))

 freq_to_sc = np.linspace(1.2, 1.1, Nsl)
 p = Nz / (np.max(z_vec) - np.min(z_vec))

 # Figure out GP regression

 for k in range(Nsl):
 Sigman = 10.0 ** -9
 Sigmaf = 1.0

 f1 = freq_cutoff[k]
 sc = f1 * freq_to_sc[k]
 a = sc ** 2 * 2 * np.pi ** 2
 b = np.log((p * (2 * np.pi) ** 0.5) / Sigman)

 def fu2(x):
 return a * np.exp(x) - 0.5 * x - b

 x = fsolve(fu2, 5)
 Sigmal = np.exp(x)

 SigmafStack[k] = Sigmaf
 SigmanStack[k] = Sigman
 SigmalStack[k] = Sigmal
 # print("SigmafStack: ", SigmafStack)
 # print("SigmanStack: ", SigmanStack)
 # print("SigmalStack: ", SigmalStack)

 dIdzStack = np.zeros((Nx, Ny, Nsl))
 CoeffStack = np.zeros((Nz, Nsl))
 Coeff2Stack = np.zeros((Nz, Nsl))
 for k in range(Nsl):
 Sigmal = SigmalStack[k]
 Sigman = SigmanStack[k]
 Sigmaf = SigmafStack[k]

 ### GP Regression step
 dIdz, Coeff, Coeff2 = GPRegression(
 Ividmeas, zfocus, z_vec, Sigmaf, Sigmal, Sigman
)
 # print("dIdz: ", dIdz)
 dIdzStack[:, :, k] = 2 * np.pi / lambd * ps ** 2 * dIdz
 CoeffStack[:, k] = Coeff
 Coeff2Stack[:, k] = Coeff2

 dIdzC = CombinePhase(dIdzStack, freq_cutoff, freqs, CoeffStack, Coeff2Stack)

 # print("dIdzStack: ", dIdzStack)
 # print("CoeffStack: ", CoeffStack)
 # print("Coeff2Stack: ", Coeff2Stack)
 ### poisson solver

 Del2_Psi_xy = (-2 * np.pi / lambd) * dIdzC

 N = dIdzC.shape[0]
 Psi_xy = poisson_solve(Del2_Psi_xy, ps, eps1, 0, reflect)

 # print("Psi_xy: ", Psi_xy)

 Grad_Psi_x, Grad_Psi_y = np.gradient(Psi_xy / ps)
 Grad_Psi_x = Grad_Psi_x / (I0 + eps2)
 Grad_Psi_y = Grad_Psi_y / (I0 + eps2)
 # print("Grad_Psi_x: ", Grad_Psi_x.shape)

 grad2x, _ = np.gradient(Grad_Psi_x / ps)
 _, grad2y = np.gradient(Grad_Psi_y / ps)
 Del2_Psi_xy = grad2x + grad2y
 # print("Del2_Psi_xy: ", Del2_Psi_xy.shape)

 Phi_xy = poisson_solve(Del2_Psi_xy, ps, eps1, 1, reflect)
 # print("Phi_xy: ", Phi_xy.shape)

 dcval = (
 np.sum(Phi_xy[:, 0])
 + np.sum(Phi_xy[0, :])
 + np.sum(Phi_xy[N - 1, :])
 + np.sum(Phi_xy[:, N - 1])
) / (4 * N)

 RePhase = -1 * (Phi_xy - dcval)
 # print("dIdzC: ", dIdzC.shape)
 # print("Del2_Psi_xy: ", Del2_Psi_xy.shape)
 # print("Phi_xy: ", Phi_xy.shape)
 # print("dcval: ", dcval.shape)
 # print("rephase: ", RePhase.shape)
 return RePhase

def CalFrequency(img, lambd, ps, dz):
 (nx, ny) = img.shape

 dfx = 1 / nx / ps
 dfy = 1 / ny / ps

 (Kxdown, Kydown) = np.mgrid[-nx // 2 : nx // 2, -ny // 2 : ny // 2]

 Kxdown = Kxdown * dfx
 Kydown = Kydown * dfy

 freqs = lambd * np.pi * (Kxdown ** 2 + Kydown ** 2)

 # normalized for sampling step and GP Regression ?
 freqs = freqs * dz / (2 * np.pi)

 return freqs

def CombinePhase(dIdzStack, Frq_cutoff, freqs, CoeffStack, Coeff2Stack):
 def F(x):
 return fft.ifftshift(fft.fft2(fft.fftshift(x)))

 def Ft(x):
 return fft.ifftshift(fft.ifft2(fft.fftshift(x)))

 Nx, Ny, Nsl = dIdzStack.shape

 dIdzC_fft = np.zeros((Nx, Ny))
 Maskf = np.zeros((Nx, Ny))

 f0 = 0
 f1 = 1

 for k in range(Nsl):
 dIdz = dIdzStack[:, :, k]
 dIdz_fft = F(dIdz)

 f1 = Frq_cutoff[k]
 Maskf = np.zeros((Nx, Ny))
 Maskf[np.argwhere((freqs <= f1) & (freqs > f0))] = 1
 f0 = f1
 dIdzC_fft = dIdzC_fft + (dIdz_fft * Maskf)

 return np.real(Ft(dIdzC_fft))

def poisson_solve(func, ps, eps, symm, reflect):
 N = len(func)

 if reflect != 0:
 N = N * 2
 func = np.hstack([func, np.fliplr(func)])
 func = np.vstack([func, np.flipud(func)])

 wx = 2 * np.pi * np.arange(0, N, 1) / N
 fx = 1 / (2 * np.pi * ps) * (wx - np.pi * (1 - N % 2 / N))
 [Fx, Fy] = np.meshgrid(fx, fx)
 func_ft = np.fft.fftshift(np.fft.fft2(func))

 Psi_ft = func_ft / (-4 * np.pi ** 2 * (Fx ** 2 + Fy ** 2 + eps))
 if symm:
 Psi_xy = np.fft.irfft2(np.fft.ifftshift(Psi_ft)[:, 0 : N // 2 + 1])
 else:
 Psi_xy = np.fft.ifft2(np.fft.ifftshift(Psi_ft))

 if reflect != 0:
 N = N // 2
 Psi_xy = np.array(Psi_xy)[:N, :N]
 # print("Psi_ft: ", Psi_ft.shape, "Psi_xy: ", Psi_xy.shape)
 return Psi_xy

def mrdivide(A, B):
 # Solves A / B or xA = B
 return A.dot(np.linalg.pinv(B))

def GPRegression(Ividmeas, zfocus, z, Sigmaf, Sigmal, Sigman):
 Nx, Ny, Nz = Ividmeas.shape
 ones = np.ones((Nz, 1))
 KZ = ones.dot(z.T) - z.dot(ones.T)
 # print("z: ", z)

 K = Sigmaf * (np.exp(-1 / 2 / Sigmal * (KZ ** 2)))
 L = np.linalg.cholesky(K + (Sigman * np.eye(Nz))).T # why multiplying by I
 z2 = zfocus
 # print("zfocus: ", zfocus)

 Nz2 = len(z2)
 ones2 = np.ones((Nz2, 1))
 KZ2 = ones * (z2.T) - z * (ones2.T)
 # print("KZ2: ", KZ2)
 # print("KZ2 stuff: ", ones, z2, z, ones2)

 D = Sigmaf * (np.exp((-1 / 2 / Sigmal) * (KZ2 ** 2))) / -Sigmal * KZ2
 # print("D: ", D)
 # print("KZ2: ", KZ2)
 # print("sigmaf: ", Sigmaf)
 # print("sigmal: ", Sigmal)
 # return
 Coeff = mrdivide(mrdivide(D.T, L), L.T)[0] # D.T/L/L.T
 # print("D: ", D)
 # print("L: ", L)
 # print("Coeff: ", Coeff)
 D2 = Sigmaf * (np.exp((-1 / 2 / Sigmal) * (KZ2 ** 2)))
 Coeff2 = mrdivide(mrdivide(D2.T, L), L.T) # D2.T/L/L.T

 dIdz = np.zeros((Nx, Ny))

 for k in range(Nz):
 dIdz = dIdz + Ividmeas[:, :, k].dot(Coeff[k])
 # print(k)
 # print(Ividmeas[:,:,k])
 # print(Coeff[k])
 # print(Ividmeas[:,:,k].dot(Coeff[k]))
 # print("dIdz: ", dIdz)

 return dIdz, Coeff, Coeff2

Test the function using simulated data

Test the functions using simulated data, which can be accessed here [https://drive.google.com/a/berkeley.edu/file/d/0B_HY5ZswCff-cU8zWnFnZ3hIa1k/view?usp=sharing]

[2]:

test_path = "phase_rec_GUI/datasets/moustache_man_stack.mat"

data = loadmat(test_path)
Ividmeas = data["Istack"]
z_vec = np.ravel(data["zvec"])

lambd = data["lambda"][0][0]
ps = data["ps"]
zfocus = 1
Nsl = 100

phase = GP_TIE(Ividmeas.astype(np.float), np.ravel(z_vec), lambd, ps, zfocus)
print("phase: ", phase)
plt.imshow(phase)
plt.hist(np.ravel(phase))
plt.show()

[image: _images/pycro_manager_tie_demo_4_0.png]

 Targeted multi-contrast microscopy using attention-based multi-instance learning for tissue sections

Targeted multi-contrast microscopy using attention-based multi-instance learning for tissue sections

In this tutorial, we will perform a selective acquisition on a tissue micro-array (TMA) core containing pancreatic cancer with a brightfield camera (QCamera) and Second-harmonic generation (SHG) laser scanning microscopy.

This acquisition workflow adaptively zooms in specific regions and performs multimodal imaging according to the contributions of these regions to the triggering of the classifier, which are explicitly expressed as attention scores in the attention-based machine learning model. This acquisition scheme can reduce the data volume and downstream data analysis computation complexity compared to an imaging scheme where the whole sample is imaged in the target magnifications. The decision of which
regions to zoom in and perform SHG imaging is based on data-driven machine learning outputs.

This machine learning technique is called multi-instance learning. Details regarding attention-based multi-instance learning can be found at https://arxiv.org/pdf/1802.04712.pdf. The specific model used in this tutorial is described at https://arxiv.org/pdf/2006.05538.pdf.

We will first snap a brightfield image at low resolution (4x) via Pycro-Manager. The pre-trained model weights will be loaded and the model will be running in inference mode. The model is implemented in PyTorch and it is pre-trained for pancreatic cancer detection.The machine learning model performs the inference on the 4x magnification image and the attention scores are obtained for each sub-region. The model then selects the top k highest-attention sub-regions and sends commands of stage
moving, objective switching, and modality switching to Micro-Manager through Pycro-Manager. Micro-Manager then acquires z-stacks of these selected regions at 20x magnification with SHG imaging.

SHG imaging is handled by a Micro-Manager C library for laser scanning, it appears as a camera device after installation. https://eliceirilab.org/openscan/.

Hardware device list

	ASI Tiger controller

	ASI Dual objective slider

	ASI XY moter

	ASI Z motor

	QCamera

	OpenScan laser scanning devices https://eliceirilab.org/openscan/

Python environment

Required packages

Dependencies: - cudatoolkit=10.1 (optional) - numpy=1.18.1 - opencv=3.4.2 - pillow=7.0 - pip=20.0 - python=3.7.6 - pytorch=1.4.0 - torchvision=0.5.0 - matplotlib=3.1.3 - scikit-learn=0.23.1 - pyyaml=5.3.1 - pyimagej=0.5.0 - pandas=1.0.5 - scikit-image=0.16.2

Setup Pycro-Manager

https://pycro-manager.readthedocs.io/en/latest/index.html

[1]:

import argparse
import copy
import glob
import os
import random
import time
import warnings
from collections import OrderedDict
from os import listdir, makedirs, mkdir
from os.path import exists, isdir, isfile, join

import cv2
import imagej
import matplotlib.pyplot as plt
import mil_dsmil_softmax as mil
import numpy as np
import pandas as pd
import torch
import torch.functional as F
import torch.nn as nn
import torchvision.models as models
import torchvision.transforms.functional as VF
from image_utils import *
from PIL import Image
from pytorch_utils import *
from skimage import (
 color,
 exposure,
 img_as_bool,
 img_as_float,
 img_as_ubyte,
 io,
 transform,
)
from skimage.filters import threshold_mean
from skimage.util import crop, pad
from skimage.util.shape import view_as_windows
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms, utils
from utils import *

from pycromanager import Acquisition, Bridge, multi_d_acquisition_events

[2]:

warnings.simplefilter("ignore", UserWarning)

[3]:

bridge = Bridge()
core = bridge.get_core()

Utils for changing hardware properties

These functions will be used to switch between objectives and imaging modalities.

We can set the hardware state by directly writing the hardware properties via CMMCore. Syntax: core.set_property([string property-name, string property-value])

[4]:

def switch_objective(target="20x"):
 if core.get_property("Turret:O:35", "Label") == "20x" and target == "4x":
 core.set_position(22835)
 time.sleep(3)
 core.set_property("Turret:O:35", "Label", target)
 if core.get_property("Turret:O:35", "Label") == "4x" and target == "20x":
 core.set_property("Turret:O:35", "Label", target)
 time.sleep(3)
 core.set_position(19370)
 print("Swtich to objective: " + core.get_property("Turret:O:35", "Label"))

LED sanity check
def LED_check(exposure="30.00", voltage="1"):
 if core.get_property("Core", "Camera") == "QCamera":
 core.set_property("QCamera", "Exposure", exposure) ### color mode ON
 core.set_property("LED-Dev1ao0", "Voltage", voltage)

Or, we can control the hardware state by changing the state of pre-defined Micro-Manager configuration groups. Syntax: core.set_config([string group-name, string config-name])

We set up a configuration group called “Imaging” with two states: QCamera and OSc-LSM. Switching between the two states can apply settings for shutters, PMT, and the camera. Details regarding how to use configuration groups to define sets of hardware properties can be found at https://micro-manager.org/wiki/Version_2.0_Users_Guide#Configuration_Groups.

[4]:

switch to bright-field
def switch_brightfield(exposure="30.00", hard_set=False):
 current_lens = core.get_property("Turret:O:35", "Label")
 if core.get_property("Core", "Shutter") == "UniblitzShutter" or hard_set:
 core.set_config("Imaging", "QCamera")
 if core.get_property("Core", "Camera") == "QCamera":
 print("Switched to bright-field, current obejective: " + current_lens)
 else:
 print("Already in Brightfield, current objective: " + current_lens)

switch to bright-field
def switch_shg(average="1", hard_set=False):
 current_lens = core.get_property("Turret:O:35", "Label")
 if core.get_property("Core", "Shutter") == "WhiteLED" or hard_set:
 core.set_config("Imaging", "OSc-LSM")
 if core.get_property("Core", "Camera") == "OSc-LSM":
 print("Switched to SHG, current obejective: " + current_lens)
 else:
 print("Already in SHG, current objective: " + current_lens)

Start at 4x, brightfield

Switch the objective to 4x and the modality to brightfield, set the lamp LED intensity.

[5]:

switch_objective("4x")
switch_brightfield(hard_set=True)
LED_check(voltage="0.16")

Swtich to objective: 4x
Switched to bright-field, current obejective: 4x

Load some pre-collected brightfield background images, these will be used for white-balance and flat-field correction.

[6]:

load pre-collected background images and estimate the background by averaging
bg_img = np.flip(estimate_bg("bright_field_bgs\\"), 2)

Snap brightfield image at low resolution, perform white-balance and flat-field correction. We can easily snap a image via core.snap_image() and access the image data via core.get_tagged_image().pix

[7]:

capture brightfield image
core.snap_image()
tagged_image = core.get_tagged_image()
if core.get_property("QCamera", "Color") == "ON":
 pixels = np.reshape(
 tagged_image.pix,
 newshape=[tagged_image.tags["Height"], tagged_image.tags["Width"], 4],
)
else:
 pixels = np.reshape(
 tagged_image.pix,
 newshape=[tagged_image.tags["Height"], tagged_image.tags["Width"]],
)

img_data = copy.deepcopy(pixels)
bg_data = copy.deepcopy(bg_img)
wb_out = white_balance(img_data, bg_data)
bg_data = white_balance(bg_data, bg_data)
output = flat_field(wb_out, bg_data)
print("Brightfield 4x TMA core, raw")
plt.figure(figsize=(8, 6))
imgplot = plt.imshow(pixels)
plt.axis("off")
plt.show()
print("Brightfield 4x TMA core, corrected")
plt.figure(figsize=(8, 6))
imgplot = plt.imshow(img_as_ubyte(output))
plt.axis("off")
plt.show()

Brightfield 4x TMA core, raw

[image: _images/guiding_acq_with_neural_network_attention_13_1.png]

Brightfield 4x TMA core, corrected

[image: _images/guiding_acq_with_neural_network_attention_13_3.png]

Bounding TMA core image, remove surronding background.

[8]:

box = bounding_tma(output)
bounded_tma = output[box[1] : box[3], box[0] : box[2], :]
plt.figure(figsize=(8, 6))
imgplot = plt.imshow(img_as_ubyte(bounded_tma))
plt.axis("off")
plt.show()

[image: _images/guiding_acq_with_neural_network_attention_15_0.png]

Load ImageJ/FIJI.

Please download FIJI https://imagej.net/Fiji and put it to the same directory as the notebook inside a folder called “Fiji”.

[9]:

print("loading ImageJ, please wait")
ij = imagej.init("Fiji/Fiji.app/")

loading ImageJ, please wait

Create the attention-based neural network and load pre-trained weights.

One key feature of histopathological data is that the images are seldom annotated with boundaries of malignant regions, but rather a single label of benign or malignant for the whole image. Since the images are too large for convolutional neural networks even in the low resolution, in order to train classifiers and to localize malignant regions, multi-instance learning approaches and attention-based mechanisms are often used. Details regarding the use of these approaches can be found at
https://www.nature.com/articles/s41591-019-0508-1 and https://arxiv.org/pdf/1802.04712.pdf.

We will densely crop the 4x image (1k x 1k resolution) into 224 x 224 patches with no overlap, and feed all the patches into the model at once. The model returns attention scores for all the patches, which will overlay as a color map to the original image.

ImageJ is used to stitch the patches back to the whole image after the attention scores are inferenced by the convolutional neural network.

In summary, the code in the following section will take the 4x image and output the coordinates of the top-k regions with the highest attention scores. These are the regions we will zoom in for SHG imaging at 20x.

[16]:

create attention machine learning model
args = argparse.Namespace()
args.weights = "0814-r2-best.pth"
args.use_cuda = False
args.num_feats = 512
args.num_classes = 2
args.top_k = 4
args.task_name = "default"
resnet18 = models.resnet18(pretrained=False, norm_layer=nn.InstanceNorm2d)
resnet18.fc = nn.Dropout(0.0)
i_classifier = mil.IClassifier(
 resnet18, feature_size=args.num_feats, output_class=args.num_classes
)
b_classifier = mil.BClassifier(input_size=args.num_feats, output_class=args.num_classes)
if args.use_cuda:
 milnet = mil.MILNet(i_classifier, b_classifier).cuda()
 state_dict = torch.load(args.weights)
 device = "cuda:0"
else:
 milnet = mil.MILNet(i_classifier, b_classifier)
 state_dict = torch.load(args.weights, map_location=torch.device("cpu"))
 device = "cpu"
model = milnet
model.load_state_dict(state_dict)
TASK = args.task_name
INPUT_PATCH_DIR = "input_patch_temp/"
OUTPUT_DIR = "output_test_" + TASK
OUTPUT_PATCH_DIR = "output_patch_temp/"
CHANNEL_DIR = "channel_temp/"
top_patch_coords = []
if os.path.exists(CHANNEL_DIR):
 shutil.rmtree(CHANNEL_DIR, onerror=on_rm_error)
os.mkdir(CHANNEL_DIR)
if os.path.exists(OUTPUT_DIR):
 shutil.rmtree(OUTPUT_DIR, onerror=on_rm_error)
os.mkdir(OUTPUT_DIR)

window_shape = (224, 224, 3)
step_size = 224
optimal_threshs = (0.823, 0.7)

print("forward pass, please wait...")
if os.path.exists(INPUT_PATCH_DIR):
 shutil.rmtree(INPUT_PATCH_DIR, onerror=on_rm_error)
if os.path.exists(OUTPUT_PATCH_DIR):
 try:
 shutil.rmtree(OUTPUT_PATCH_DIR, onerror=on_rm_error)
 except:
 pass
makedirs(INPUT_PATCH_DIR, exist_ok=True)
makedirs(OUTPUT_PATCH_DIR, exist_ok=True)

img = copy.deepcopy(bounded_tma)
pad_h = int(np.ceil(img.shape[0] / window_shape[0]) * window_shape[0]) - img.shape[0]
pad_w = int(np.ceil(img.shape[1] / window_shape[1]) * window_shape[1]) - img.shape[1]
canvas = pad(img, ((0, pad_h), (0, pad_w), (0, 0)), mode="constant", constant_values=1)

windows = view_as_windows(canvas, window_shape, step_size)
with open(OUTPUT_PATCH_DIR + "TileConfiguration.txt", "w") as text_file:
 print("dim = {}".format(2), file=text_file)
 for i in range(0, windows.shape[1]):
 for j in range(0, windows.shape[0]):
 patch = windows[
 j,
 i,
]
 patch = np.squeeze(patch)
 if thresSaturation(patch, 10):
 io.imsave(
 INPUT_PATCH_DIR + "/{}_{}.tiff".format(j, i), img_as_ubyte(patch)
)
 print(
 "{}_{}.tiff; ; ({}, {})".format(j, i, i * step_size, j * step_size),
 file=text_file,
)
csv_file_path = generate_csv(INPUT_PATCH_DIR, os.getcwd())
dataloader = test_dataset(csv_file_path)
with open(csv_file_path) as f:
 reader = csv.reader(f)
 name_list = list(reader)
 with torch.no_grad():
 for iteration, batch in enumerate(dataloader):
 patches = (
 batch["input"].float().to(device)
) # .view(1, 3, window_shape[0], window_shape[1])
 classes, bag_prediction, A = milnet(patches) # n X L
 bag_prediction_data = torch.sigmoid(bag_prediction).cpu().squeeze().numpy()

 indicator_class = 1 # 0 cp, 1 n, 2 pc
 if bag_prediction_data[1] > optimal_threshs[1]:
 indicator_class = 2
 elif bag_prediction_data[0] > optimal_threshs[0]:
 indicator_class = 0
 i = 0
 A = A.cpu().numpy()
 A_max = np.max(A)
 A_min = np.min(A)
 k = 1 / (A_max - A_min)
 b = -A_min / (A_max - A_min)
 for a in A:
 a_cp = np.clip(a[0] * k + b, 0, 1)
 a_pc = np.clip(a[1] * k + b, 0, 1)
 patch_color = (a_pc, 0, a_cp)
 if indicator_class == 1:
 patch_color = (0, 0, 0)
 elif indicator_class == 0:
 patch_color = (0, 0, a_cp)
 elif indicator_class == 2:
 patch_color = (a_pc, 0, 0)

 patch_result = img_as_ubyte(
 np.tile(np.array(patch_color), (step_size, step_size, 1))
)
 img_name = str(name_list[i]).split("/")[-1].split("'")[0]
 io.imsave(OUTPUT_PATCH_DIR + img_name, patch_result)
 i = i + 1

 indices = np.argsort(A[:, 1])[::-1]
 indices = indices[: args.top_k]
 top_patch_names = [
 str(name_list[i]).split("/")[-1].split("'")[0] for i in indices
]
 for top_patch_name in top_patch_names:
 y_coord = (
 int(top_patch_name.split(".")[0].split("_")[0]) * window_shape[0]
 + window_shape[0] / 2
)
 x_coord = (
 int(top_patch_name.split(".")[0].split("_")[1]) * window_shape[1]
 + window_shape[1] / 2
)
 top_patch_coords.append((x_coord, y_coord))
 print(top_patch_coords)

print("stitching, please wait...")
params = {
 "type": "Positions from file",
 "order": "Defined by TileConfiguration",
 "directory": OUTPUT_PATCH_DIR,
 "ayout_file": "TileConfiguration.txt",
 "fusion_method": "Max. Intensity",
 "regression_threshold": "0.30",
 "max/avg_displacement_threshold": "2.50",
 "absolute_displacement_threshold": "3.50",
 "compute_overlap": False,
 "computation_parameters": "Save computation time (but use more RAM)",
 "image_output": "Write to disk",
 "output_directory": CHANNEL_DIR,
}
plugin = "Grid/Collection stitching"
ij.py.run_plugin(plugin, params)

output_name = os.path.join(OUTPUT_DIR, "test.tif")
listOfChannels = [f for f in os.listdir(CHANNEL_DIR)]
c1 = io.imread(os.path.join(CHANNEL_DIR, listOfChannels[0]))
c2 = io.imread(os.path.join(CHANNEL_DIR, listOfChannels[1]))
c3 = io.imread(os.path.join(CHANNEL_DIR, listOfChannels[2]))
c1 = c1[: img.shape[0], : img.shape[1]]
c2 = c2[: img.shape[0], : img.shape[1]]
c3 = c3[: img.shape[0], : img.shape[1]]
img_to_save = np.stack((c1, c2, c3)).transpose(1, 2, 0)
img_to_save = exposure.rescale_intensity(
 img_as_float(img_to_save), in_range=(0.2, 1), out_range=(0, 1)
)
pad_h = img.shape[0] - img_to_save.shape[0]
pad_w = img.shape[1] - img_to_save.shape[1]
img_to_save = pad(img_to_save, ((0, pad_h), (0, pad_w), (0, 0)))
img = img_as_float(img[:, :, :3] * 0.6)
img_to_save = exposure.rescale_intensity(
 img_to_save, in_range=(0.2, 0.8), out_range=(0, 0.9)
)
img_to_save = np.clip((img_to_save + img), 0, 1)
print("saved at: " + OUTPUT_DIR)
io.imsave(output_name, img_as_ubyte(img_to_save))
plt.figure(figsize=(8, 6))
imgplot = plt.imshow(img_as_ubyte(img_to_save))
plt.axis("off")
plt.show()

forward pass, please wait...
[(784.0, 784.0), (560.0, 784.0), (336.0, 560.0), (784.0, 560.0)]
stitching, please wait...
saved at: output_test_default

[image: _images/guiding_acq_with_neural_network_attention_19_1.png]

ROIs with top 4 attention scores are selected. The image coordinates of the ROIs are mapped to the xy stage positions. The transformation between image coordinates and stage positions need to be determined by landmarks calibration, which only has to be done once for the same objective.

[17]:

pixel_size = 1.282
x_pos = core.get_x_position()
y_pos = core.get_y_position()
off_set_x = box[0] * pixel_size + 84
off_set_y = box[1] * pixel_size - 52
pos_list = []
for top_patch_coord in top_patch_coords:
 pos_list.append(
 (
 x_pos + (448 - top_patch_coord[0]) * pixel_size,
 y_pos + (448 - top_patch_coord[1]) * pixel_size,
)
)

[18]:

pos_list

[18]:

[(10962.488, -4629.912),
 (11249.655999999999, -4629.912),
 (11536.824, -4342.744),
 (10962.488, -4342.744)]

Perform SHG imaging at the selected regions

Switch to the 20x objective, and switch the modality to SHG laser scanning microscopy.

[20]:

switch_objective("20x")
switch_shg(hard_set=True)

Swtich to objective: 20x
Switched to SHG, current obejective: 20x

Focus offset between brightfield and SHG imaging.

[31]:

z_pos = core.get_position()
z_shg_center = z_pos + 136
core.set_position(z_shg_center)

Iterate the ROIs

Z-stack is collected at each ROI via multi_d_acquisition_events.

[34]:

for i, pos in enumerate(pos_list):
 core.set_xy_position(pos[0], pos[1])
 with Acquisition(directory="test", name="exp_2-1_1024_pos_" + str(i)) as acq:
 events = multi_d_acquisition_events(
 z_start=z_shg_center - 20, z_end=z_shg_center + 20, z_step=5
)
 acq.acquire(events)

Plot the projected z-stack images at the selected locations.

[35]:

img0 = io.imread("brightfield\\exp_02\\pos_0.tif")
img1 = io.imread("brightfield\\exp_02\\pos_1.tif")
img2 = io.imread("brightfield\\exp_02\\pos_2.tif")
img3 = io.imread("brightfield\\exp_02\\pos_3.tif")

f, axarr = plt.subplots(1, 4, figsize=(32, 96))
axarr[0].imshow(img0, cmap="gray", interpolation="bicubic")
axarr[1].imshow(img1, cmap="gray", interpolation="bicubic")
axarr[2].imshow(img2, cmap="gray", interpolation="bicubic")
axarr[3].imshow(img3, cmap="gray", interpolation="bicubic")
plt.axis("off")
plt.show()

[image: _images/guiding_acq_with_neural_network_attention_30_0.png]

[27]:

io.imsave("brightfield\\exp_02\\raw.tiff", pixels)

[28]:

io.imsave("brightfield\\exp_02\\corrected.tiff", img_as_ubyte(output))

[29]:

io.imsave("brightfield\\exp_02\\bounded.tiff", img_as_ubyte(bounded_tma))

 Auto CyCIF Project

Auto CyCIF Project

This project is not completed and is a work in progress

This code is part of an ongoing project to create a microscope to automatically execute the CyCIF multiplex immunostaining method [https://www.cycif.org/] on several slides at once. This project fuses a custom precision engineered microscope from ASI [http://www.asiimaging.com/] with a few open source FDM 3D printed parts built into it with a raspberry pi to control them. Once this project is completed, all plans will be made available here and plans for the microscope will be on file
and available for order from ASI. The goal of this project is not to make a super cheap, open source auto CyCIF microscope. Many of the projects that I have seen in the past require too much time commmitment and skill to execute. This microscope isn’t super cheap, but it also isn’t expensive. Its a price point that is reasonable for many individual labs and cores to purchase ($50k). The 3D printed components are simple for anyone to make and were printed on a Prusa i3Mk3S 3D
printer [https://www.prusa3d.com/original-prusa-i3-mk3/] with PLA filament. ## What is CyCIF? CyCIF is an affordable open source method of multiplex imaging that was developed by the Sorger lab at Harvard Medical School. Its basis of operation is: 1. Stain sample with DAPI or Hoechst (light stain) + 3 other antibodies directly conjugated to green, red and far red emitting dyes. These dyes must be cyanide based for the method to work properly. Currently, the best dyes that are commonly used
are Alexa 488, Alexa 555 and Alexa 647. Alexa 647 is virtually a perfect dye for this method, Alexa 488 works pretty well and Alexa 555 works well for the method, but isn’t commonly available directly conjugated and leaves a bit to be desired from a fluorophore performance point of view. Never use Alexa 568. Its a great dye to image with, but is awful for this method. It just doesn’t bleach. DAPI’s only real use in this method to be an aligment marker because inbetween cycles, you will never get
the sample back to its exact previous place perfectly, so DAPI is in every imaging cycle and provides a constant to align each cycle against. 2. Image sample with microscope (tiled/montage typically for whole tissue imaging, but in theory works with any microscope technology and imaging method such as z-stack although software doesn’t exist to handle z-stacks quite yet). 3. Bleach sample with solutoin that mainly contains hydrogen peroxide. This solution destroys the fluorescence of all dyes
listed in step 1, but leaves DAPI relatively unbleached. 4. Restain with same dyes, but conjugated to different antibodies. 5. Repeat steps 2-4, for as many dyes as desired. 6. Use Ashlar software designed by the Sorger Lab to align all images from different cycles, stitch them together and output a new stitched image with every stained antibody contained in it.

What does the Microscope do?

The CyCIF method works great, but unfortunatley, it is a labor intensive and time consuming process. Most of the difficulty in the process is getting your sample back to the same spot (Ashlar can compensate, but you must at least be close to the same spot). With microsocpes that most people have access to, it requires etching a fiducial mark and then knowing the coordinates from that mark to the center of your tile image. The bleaching cycles are not hard, but do consume time. They consist of
placing the slide into a bleaching solution with UV light on it to accelerate it, then wash and restain it. That process is around 1.5-2 hrs long to get it back on the microscope. Now say you want 24 antibodies stained? Its easy to see how it would be tedious and take several days to do a single slide. Slides may be done in parallel, but then this becomes even more a time consuming task. With this in mind, here is an overview of the oder of operations that the microscope will do. 1. User does
first stain cycle manually, mounts up to 4 slides onto stage and manually defines the bounded tiled regions of each tissue section on each slide to the microscope. 2. The microscope goes to each region, autofocuses on a subset of tiles to get uneven parts of the tissue in focus and images each region. 3. Flood slide imaging chamber with bleaching solution and turn on UV leds. 4. Wash slides in chamber. 5. Drive autopipettor over each tissue section and deposit the next cycle’s stains. 6. Wait 1
hour and then wash slides again. 7. Run IR reflection autofocus to compensate for intercycle drift. 8. Image each region again. 9. Repeat steps 3-8 until all cycles are completed.

How does it Accomplish this?

	Since each tissue needs restained, cover glass cannot be used. This makes tissue proned to drying out during the imaging process. Additionally, we want to not have to remove slides for bleaching and staining cycles, so we would like to keep the slide in its exact same position which would elimate the need for tedious cycle alignment and fiducial marks. To solve these issues and increase the resolution via high NA objectives, we are employing an upright, water dipping objective style
microscope.

	Micromanager 2.0 gamma [https://micro-manager.org/wiki/Version_2.0] is used to control the microscope.

	All 3D printed add on devices are controlled with a raspberry 3 B+ with python code.

	Micromanager is coded in java and thus I cannot use python to control both it and my raspberry pi controlled devices. To bridge this gap, pycromanager [https://github.com/micro-manager/pycro-manager] was employed. This python package created by Henry Pinkard translates python code into java code that micromanager understands.

	The raspberry pi is a separate device from the computer that runs the microscope. They must comunicate with each other, preferably via wifi. MQTT [https://pypi.org/project/paho-mqtt/] protocol was decided on to bridge this communication gap. This python package effectively allows the microscope computer to send instructions to the raspberry pi, which then a python program on the raspberry pi is programmed to execute certain task when it gets certain messages from the computer.

	The pump system is referred to as the octopump system. Its a versatile, simple python controlled peristaltic pump unit (can be used for much more than just this application and in fact I, myself use it for much more). This pump system is based upon Adafruit’s Motor Shield [https://www.adafruit.com/product/1438] which is capable of driving 4 dc motors. A 3D printed housing for the motors and raspberry pi has been created too.

	The sample holder is a plate of glass with a 3D printed rim affixed to it that allows for liquids to be pumped into it and drained from it. It also allows for the liquids to be able to form a thick enough layer for the objectives to be able to dip into it.

	The same raspberry pi that runs the octopump system, runs the robotic pipettor. This pipettor has no arm, but instead uses the microscope stage to navigate itself over the tissue to be restained. Pycromanager allows us to find the center of the user defined tissue regions and adding in the known offset from the objective to the pipettor, we can tell the computer exactly where to drive the stage to. The pipettor is built around a revolver style with BD 1mL syringes loaded into it. Both the
revolver location and syringe priming are determined with hall effect sensors.

	Ashlar is used post-acquistion to align and stitch all images. In our case, this is performed in high speed cluster computers, but in principle, any computer can be used for it.

Code Breakdown

Below here, we will dive into each function to understand what its point is and what it is doing.

lets import everything that we will need

[1]:

import math
import os

import matplotlib.pyplot as plt
import numpy as np
from tifffile import imread, imwrite

from pycromanager import Acquisition, Bridge, Dataset, multi_d_acquisition_events

Since I am using the microscope’s to move itself underneath my robotic pipettor, I need to find the center of the tissue. This method looks at all points in a user generated micromagellan surface, find the largest and lowest values of x and y stage coordinates and then find the center of those. This will be very close to the true center of the tissue.

[]:

def tissue_center(mag_surface):
 surface_points = {}
 interp_points = (
 mag_surface.get_points()
) # pull all points that are contained in micromagellan surface
 x_temp = []
 y_temp = []
 z_temp = []

 for i in range(interp_points.size()):
 point = interp_points.get(i)
 x_temp.append(point.x)
 y_temp.append(point.y)
 z_temp.append(point.z)
 surface_points["x"] = x_temp ## put all points in dictionary to ease use
 surface_points["y"] = y_temp
 surface_points["z"] = z_temp
 x_middle = (max(surface_points["x"]) - min(surface_points["x"])) / 2 + min(
 surface_points["x"]
) # finds center of tissue in X and below in Y
 y_middle = (max(surface_points["y"]) - min(surface_points["y"])) / 2 + min(
 surface_points["y"]
)
 xy_pos = list((x_middle, y_middle))
 return xy_pos

The next part is very easy. How do I now go to the center? In the case with the pipettor, it will be center+offset

[]:

core.set_xy_position(
 tissue_center(surface)[0], tissue_center(surface)[1]
) # goto center of tissue

In order to auto make acquistion events, we need to know exactly how many surfaces the users created. This method can tell us, but it needs the default naming scheme, i.e. New Surface 1, New Surface 2, …

[]:

def num_surfaces_count():
 x = 1
 while magellan.get_surface("New Surface " + str(x)) != None:
 x += 1
 return x - 1

This function sets all the acquistion settings for each tissue section. It starts off by seeing if there are less, equal or more acquistion events than surfaces. Since I want them in a 1:1 ratio, it deletes any number of events greater than the surfaces, adds if they are less and does nothing if they equal each other. It then names each one tissue_x, where is an integer and sets everything with respect to the surface, i.e. tissue_1 is based all off of surface_1 and so on. Settings can be
easily added on or taken away as desired.

[]:

def acq_settings_set():
 surface_count = num_surfaces_count()
 y = 1
 while magellan.get_acquisition_settings(y) != None:
 y += 1
 if y < surface_count:
 for z in range(y, surface_count):
 magellan.create_acquisition_settings()
 elif y > surface_count:
 for z in range(surface_count, y):
 magellan.remove_acquisition_settings(z)
 else:
 for x in range(0, surface_count):
 acq_settings = magellan.get_acquisition_settings(x)
 acq_settings.set_acquisition_name("tissue_" + str(x + 1))
 acq_settings.set_acquisition_space_type("2d_surface")
 acq_settings.set_xy_position_source("New Surface " + str(x + 1))
 acq_settings.set_surface("New Surface " + str(x + 1))
 acq_settings.set_bottom_surface("New Surface " + str(x + 1))
 acq_settings.set_top_surface("New Surface " + str(x + 1))

We would like no user interaction with the samples, so we must auto expose the samples. This simple algorithm goes to the center of each tissue and uses the magellan surface z at that point. It then takes a snap, sees how high the max intensity is, sees the exposure time and adjusts it to get the max intensity to 30% of the max value. The way it is defined, we must include our own channel names within the method (DAPI, FITC, etc). This isnt as exact as multi exposure algorithms, but its quick as
satisfactory for this purpose. In the future, LED intensity may be changed as well in order to take image more rapidily. Another change could be to disregaurd the top 0.3% of pixels (its an arbitary number). The 4096 is valid for 12 bit cameras like what I am using.

[]:

def auto_expose(magellan_surface):

 xy, z = tissue_center(magellan_surface)
 x = xy[0]
 y = xy[1]
 z = z[0]
 channels = ["DAPI", "FITC", "Texas_Red", "Alexa_647"]

 core.set_xy_position(x, y) # goto center of tissue
 core.set_stage_position = z
 exposure = np.array([])
 for x in range(0, len(channels)):
 core.set_config("Channel", channels[x])
 core.snap_image()
 tagged_image = core.get_tagged_image()
 pixels = np.reshape(
 tagged_image.pix,
 newshape=[tagged_image.tags["Height"], tagged_image.tags["Width"]],
)
 exposure = np.append(
 exposure, 0.3 / (int(np.max(pixels)) / 4096) * core.get_exposure()
)
 return exposure

At the end of all acquistions, we have a series of folders with images that micromagellan outputted. The way micromagellan organizes this is to for each surface, it creates a folder with that contain multiple resolutions and within that is a single multipage tiff file. This file has one page per tile, channel, etc. In this case, its just tile and channel. While this is convenient, it does not mesh with the required input organization for Ashlar. The scheme that Ashlar requires is each tile
is its own separate tiff with the naming scheme being consistent. I chose the scheme to be tile number, channel number, cycle number and placed it within its own folder that denoted the tissue number. For example one file within the folder ashlar_input_tissue_1 was called tile1_channel1_cycle2.

This function looks into the directory that micromagellan created, sees how many cycles exist for each tissue (it knows the naming scheme is tissue_1, tissue_2, etc. so it uses the Filter method to find all file names that contain the sub string tissue_1 or tissue_2, etc. and then the number of files = number of cycles). Then it creates an overall directory for that tissue number (i.e. ashlar_input_tissue_1) and then proceeds to load in the multipage full resolution tiff file and break it
apart. The pattern that micromagellan uses is if you have x number of channels, the first x pages are tile 1 for channel 1, tile 1 for channel 2, … tile 1 for channel x. Then the next x pages are tile 2 for channel 1, tile 2 for channel 2, … tile 2 for channel x and so on for every tile that you have. Knowing this pattern, this function breaks each page apart and makes a new tiff file with the appropriate name such as tile1_channel1_cycle2.

[]:

def Filter(string, substr):
 return [str for str in string if any(sub in str for sub in substr)]

def ashlar_input_file_organizer(saving_directory):
 all_files = os.listdir(saving_directory)
 num_surfaces = 1
 for x in range(0, num_surfaces):
 single_tissue_files = Filter(all_files, "tissue_" + str(x + 1))
 tissue_ashlar_directory = (
 saving_directory + "\\" + "ashlar_input_" + str(single_tissue_files[0])
)
 os.mkdir(tissue_ashlar_directory)
 for y in range(0, len(single_tissue_files)):
 image = imread(
 saving_directory
 + "\\"
 + str(single_tissue_files[y])
 + "\\"
 + "full resolution"
 + "\\"
 + str(single_tissue_files[0] + "_MagellanStack.tif")
)
 max_page = image.shape[0]
 cycle_num = y + 1
 channel_num = 1
 tile_num = 1
 tiff_page_counter = 0
 for page in range(0, max_page):
 temp_image = image[tiff_page_counter]
 imwrite(
 tissue_ashlar_directory
 + r"\tile"
 + str(tile_num)
 + "_channel"
 + str(channel_num)
 + "_cycle"
 + str(cycle_num)
 + ".tif",
 temp_image,
)
 channel_num += 1
 tiff_page_counter += 1
 if channel_num == 6:
 channel_num = 1
 tile_num += 1
 if tile_num == 10:
 tile_num = 1

When imaging tissue slices at higher NAs, it becomes apparent that the tissue can be wavy. It never is very dramatic, but enough that if only one focal plane is chosen, then some will be crisp and some will be a touch blurry. Autofocusing on each tile can solve this, but is massively time consuming and in many cases takes significantly more time than the acquistion of the entire tiled image itself. To combat this, we are going to leverage micromagellan’s surface interpolation feature. With this
feeature, if we feed it a few points with accurate in focus z positions, it will generate a surface that takes them into account and interpolate the rest. As long as the transistions are gentle, we can give it much less points than the number of tiles and still get everything in focus. To accomplish this, we need a method that is capable of looking at the magellan surface, find how many tiles are needed in each dimension, determine what tiles in the grid are suitable for subsampling with
autofocus and then convert those tile locations into actual XY coordinates for the stage to use. The below method allows for a sub sampling % to be defined in order to tune speed and focus quality in indiviual sample. It performs a uniformly spaced, isotropic subsample of the entire region. In other words, it spreads out sampling points evenly. Due to build in roundings within the method, it cannot deliver the exact sub sample % desired, but it does output the actual sub sample % used. Tweaking
the number can get you closer to the desired sub sampling %.

[]:

def bound_region2tile(tile_overlap):
 max_x = 7000
 min_x = 200
 max_y = 4000
 min_y = 500
 width = 1344
 height = 1024
 x_length = max_x - min_x
 y_length = max_y - min_y
 tiles_x = math.ceil(x_length / width * (1 - tile_overlap / 100))
 tiles_y = math.ceil(y_length / height * (1 - tile_overlap / 100))
 center_coords_x = x_length / 2 + min_x
 center_coords_y = y_length / 2 + min_y

 if tiles_x % 2 == 0: # odd or even check. % 2 is remainder after a division by 2
 starting_x_point = (width * (1 - tile_overlap / 100)) / 2 + center_coords_x
 x_points = np.array(starting_x_point)
 for y in range(0, int(tiles_x / 2 - 1)):
 x_points = np.insert(
 x_points,
 0,
 (y + 1) * width * (1 - tile_overlap / 100) + starting_x_point,
)
 for y in range(0, int(tiles_x / 2)):
 x_points = np.append(
 x_points, -(y + 1) * width * (1 - tile_overlap / 100) + starting_x_point
)
 elif tiles_x % 2 != 0:
 starting_x_point = center_coords_x
 x_points = np.array(starting_x_point)
 for y in range(0, int(math.floor(tiles_x / 2))):
 x_points = np.insert(
 x_points,
 0,
 (y + 1) * width * (1 - tile_overlap / 100) + starting_x_point,
)
 for y in range(0, int(math.floor(tiles_x / 2))):
 x_points = np.append(
 x_points, -(y + 1) * width * (1 - tile_overlap / 100) + starting_x_point
)

 if tiles_y % 2 == 0: # odd or even check. % 2 is remainder after a division by 2
 starting_y_point = (height * (1 - tile_overlap / 100)) / 2 + center_coords_y
 y_points = np.array(starting_y_point)
 for y in range(0, int(tiles_x / 2 - 1)):
 y_points = np.insert(
 y_points,
 0,
 (y + 1) * height * (1 - tile_overlap / 100) + starting_y_point,
)
 for y in range(0, int(tiles_x / 2)):
 y_points = np.append(
 y_points,
 -(y + 1) * height * (1 - tile_overlap / 100) + starting_y_point,
)
 elif tiles_y % 2 != 0:
 starting_y_point = center_coords_y
 y_points = np.array(starting_y_point)
 for y in range(0, int(math.floor(tiles_x / 2))):
 y_points = np.insert(
 y_points,
 0,
 (y + 1) * height * (1 - tile_overlap / 100) + starting_y_point,
)
 for y in range(0, int(math.floor(tiles_x / 2))):
 y_points = np.append(
 y_points,
 -(y + 1) * height * (1 - tile_overlap / 100) + starting_y_point,
)

 return tiles_x, tiles_y, np.int32(x_points), np.int32(y_points)

print(bound_region2tile(10))
[tiles_x, tiles_y, x_points, y_points] = bound_region2tile(10)

def focus_tile_pos_generator(area, tiles_in_x, tiles_in_y):
 iterations_x = math.ceil(tiles_in_x * math.sqrt(area))
 step_size_x = math.floor(tiles_in_x / iterations_x)
 remainder_x = tiles_in_x - (step_size_x * (iterations_x - 1))

 iterations_y = math.ceil(tiles_in_y * math.sqrt(area))
 step_size_y = math.floor(tiles_in_y / iterations_y)
 remainder_y = tiles_in_y - (step_size_y * (iterations_y - 1))

 if (remainder_x % 2) == 0:
 offset_x = remainder_x / 2
 else:
 if remainder_x == 1:
 offset_x = 1
 else:
 offset_x = (remainder_x - 1) / 2 + 1
 x = []
 for iteration in range(0, iterations_x):
 x.append(offset_x + iteration * step_size_x)

 if (remainder_y % 2) == 0:
 offset_y = remainder_y / 2
 else:
 if remainder_y == 1:
 offset_y = 1
 else:
 offset_y = (remainder_y - 1) / 2 + 1
 y = []
 for iteration in range(0, iterations_y):
 y.append(offset_y + iteration * step_size_y)

 focus_tile_locations = {"X": x, "Y": y}
 true_coverage = (
 str(round(len(x) * len(y) / (tiles_in_x * tiles_in_y), 2) * 100) + "%"
)

 return focus_tile_locations, true_coverage

[grid1, true_coverage_grid1] = focus_tile_pos_generator(0.10, tiles_x, tiles_y)

def grid2points(sampling_grid, x_points, y_points):
 number_sampling_points = int(len(sampling_grid["X"]) * len(sampling_grid["Y"]))
 sampling_points = np.array([])
 for x in range(0, len(sampling_grid["X"])):
 for y in range(0, len(sampling_grid["Y"])):
 sampling_points = np.insert(
 sampling_points,
 0,
 [
 x_points[int(sampling_grid["X"][x]) - 1],
 y_points[int(sampling_grid["Y"][y]) - 1],
],
)
 sampling_points.shape = (number_sampling_points, 2)
 return sampling_points

def surface2sampling_points(tile_overlap, area_fraction_sampled):
 [tiles_x, tiles_y, x_points, y_points] = bound_region2tile(10)
 [sampling_grid, true_coverage_grid1] = focus_tile_pos_generator(
 0.10, tiles_x, tiles_y
)
 sampling_points = grid2points(sampling_grid, x_points, y_points)

 return sampling_points, true_coverage_grid1

 Closed-loop acquisition and perturbation with pycro-manager

Closed-loop acquisition and perturbation with pycro-manager

an example of closed-loop experimentation enabled by pycro-manager

When imaging live biological samples, we often have specific features of cellular activity we are interested in, such as a pattern of neural activity or stage in the cell cycle. We can interrogate these dynamics with closed-loop (CL) experimental design. CL perturbations are triggered by signals derived from data acquired from the sample itself during a live recording session. Recent advancements in computing allow experimenters to coduct closed-loop experiments, which will deeply influence
optical physiology, allowing realtime adaptation to animal state, enforcement of physiological constraints on evoked patterns, calibrated control with cellular resolution, and a variety of important experimental controls that were previously inaccessible (Grosenick, Marshel, and Deisseroth 2016 Neuron). Specifically, CL experiments:

	ensure perturbation occurs during statistically rare conditions

	allow online tuning of optogenetic inputs in vivo (to achieve specific output parameters)

	allow online system identification / modeling of neural circuits (i.e. causally establish functional circuit architecture)

	steer the system into desired or otherwise non-observable states

	eliminate off-target effects of non-closed-loop perturbations

	reduce variability of system state at time of stimulus onset

In this example we use features of pycro-manager which enable closed-loop experimentation. Specifically we perform some canonical image processing (template filtering with 2d gaussian kernel, thresholding, median filtering), then find local peaks, then take a window of pixel values around each peak. We use these pixel values to trigger our arbitrary “stimulus” function which can e.g. change optical settings on the microscope, call a separate program, etc.

Here we use snap_image() to acquire our images for readability and to show an example of headless pycromanager acquisition. Alternatively one could use pycro-manager Acquisitions to run our closed-loop experiment. We also leverage a few neat tricks:

	we strobe our imaging acquisition by introducing a small delay between images. This makes snap_image() timing an order of magnitude more accurate, and reflects a common imaging condition for perturbative experiments, and gives our closed-loop processing algorithm time to perform computation.

	we use the python package numba to just-in-time compile our closed-loop computation into LLVM intermediate representation. This affords an order-of-magnitude speedup, as numba-compiled numerical algorithms can allow Python code to approach the speeds of C.

By Raymond L. Dunn, the FOCO Lab, UC San Francisco

code

load pycro-manager objects and parameters

[1]:

simple single image acquisition example with snap
import time

import matplotlib.pyplot as plt
import numpy as np

from pycromanager import Bridge

Setup
bridge = Bridge()
core = bridge.get_core()

imaging settings
exposure = 20
num_frames_to_capture = 100
core.set_exposure(exposure)

strobe settings
by enforcing a strobe (a small delay between acquisitions), our snap_image acquisition framerate becomes an order of magnitude more accurate (as of 20201006)
interframe_interval = 50
assert interframe_interval > exposure

holder variables for images, model values, and processing timestamps
frames = []
model = []
acq_timestamps = []
process_timestamps = []

ModuleNotFoundError Traceback (most recent call last)
<ipython-input-1-4762c2ba8208> in <module>
 2 import time
 3
----> 4 import matplotlib.pyplot as plt
 5 import numpy as np
 6

ModuleNotFoundError: No module named 'matplotlib'

define an image quantification function

[2]:

make sure you have this module downloaded and in the appropriate directory so you can import it
you might have to install some other python dependencies
import ImageProcessorFOCO as ImageProcessor

define your image processing function
in this case we're doing some image processing, finding local peaks, and taking a 3x3 grid of pixel values from each peak
this function returns whether or not to trigger stimulation
def process_frame(frame, ip, is_demo=False):

 # if we're running this example with the micromanager demo config, peakfinding doesn't really make sense on gratings
 if is_demo:
 return 0

 # simple peakfinding algorithm from accompanying module
 xys_list = ip.segmentchunk(frame.astype(np.float32))

 # if no peaks, return placeholder value
 if len(xys_list) == 0:
 return 0

 # grab 3x3 pixels around each peak
 pix = []
 xys = np.array(xys_list) - 1 # -1 because of single pixel offset bug...
 pix.append(frame[xys[:, 0], xys[:, 1]])
 pix.append(frame[xys[:, 0], xys[:, 1] - 1])
 pix.append(frame[xys[:, 0], xys[:, 1] + 1])
 pix.append(frame[xys[:, 0] - 1, xys[:, 1]])
 pix.append(frame[xys[:, 0] - 1, xys[:, 1] - 1])
 pix.append(frame[xys[:, 0] - 1, xys[:, 1] + 1])
 pix.append(frame[xys[:, 0] + 1, xys[:, 1]])
 pix.append(frame[xys[:, 0] + 1, xys[:, 1] - 1])
 pix.append(frame[xys[:, 0] + 1, xys[:, 1] + 1])

 # flatten and sort peak-averages
 peak_averages = np.sort(np.array(pix).mean(axis=0).flatten())

 # in this example let's just average across peaks
 avg = peak_averages.mean()

 return avg

quantification settings
initialize jit precompilation with an intial image from the microscope
ip = ImageProcessor.ImageProcessor()
core.snap_image()
tagged_image = core.get_tagged_image()
frame = np.reshape(
 tagged_image.pix, newshape=[tagged_image.tags["Height"], tagged_image.tags["Width"]]
)
garbage = process_frame(frame, ip)

ModuleNotFoundError Traceback (most recent call last)
<ipython-input-1-65adf5a3d9c5> in <module>
 1 # make sure you have this module downloaded and in the appropriate directory so you can import it
 2 # you might have to install some other python dependencies
----> 3 import ImageProcessorFOCO as ImageProcessor
 4
 5

~/checkouts/readthedocs.org/user_builds/pycro-manager/checkouts/stable/docs/source/ImageProcessorFOCO.py in <module>
 1 import numpy as np
----> 2 import cv2
 3 from numba import jit
 4
 5

ModuleNotFoundError: No module named 'cv2'

define a function for how your real-time quantified data triggers e.g. a microfluidic solenoid or a laser

[3]:

for this demo we have a dummy function (it's over 9000 lol)
def process_model(model):

 threshold = 9000
 if model[-1] > threshold:

 # code here to do whatever perturbation you want
 pass

 return

run acquisition. iteratively take frames, quantify, and check for stimulation trigger

[4]:

do acquisition
print("beginning acquisition...")
t0 = time.time()
next_call = time.time() # updated periodically for when to take next image
for f in range(num_frames_to_capture):

 # snap image
 core.snap_image()
 tagged_image = core.get_tagged_image()

 # save acquisition time timestamp
 t1 = time.time()
 acq_timestamps.append(time.time() - t0)

 # pixels by default come out as a 1D array. We can reshape them into an image
 frame = np.reshape(
 tagged_image.pix,
 newshape=[tagged_image.tags["Height"], tagged_image.tags["Width"]],
)

 # quantify image and save processing time timestamp
 val = process_frame(frame, ip, is_demo=True)
 process_timestamps.append(time.time() - t1)

 # store latest value in model and conditionally trigger perturbation
 model.append(val)
 process_model(model)

 # helpful printout to monitor progress
 if f % 50 == 0:
 print("current frame: {}".format(f))

 # wait until we're ready to snap next image. note that in this example, the first few images may exceed the strobe delay as numba jit compiles the relevant python functions
 nowtime = time.time()
 next_call = next_call + interframe_interval / 1000
 if next_call - nowtime < 0:
 print(
 "warning: strobe delay exceeded inter-frame-interval on frame {}.".format(f)
)
 else:
 time.sleep(next_call - nowtime)

print("done!")

beginning acquisition...

NameError Traceback (most recent call last)
<ipython-input-1-d48ae0c3e1e0> in <module>
 3 t0 = time.time()
 4 next_call = time.time() # updated periodically for when to take next image
----> 5 for f in range(num_frames_to_capture):
 6
 7 # snap image

NameError: name 'num_frames_to_capture' is not defined

[5]:

print("thanks for reading!")

thanks for reading!

[]:

 API Reference

API Reference

Acquisition event specification

The following shows all possible fields in an acquisition event (not all of which are required). An acquisition event which does not contain either the ‘channel’ key or the ‘axes’ key will not acquire an image, and can be used to control hardware only.

event = {
 #A dictionary with the positions along various axes (e.g. time point indez,
 #z-slice index, etc) a 'channel' axis is not required as it is inferred
 #automatically
 'axes': {'axis1_name': integer_value,
 'axis2_name': integer_value},

 #The config of group and setting corresponding to this channel
 'channel': {
 'group': 'name_of_micro_manager_config_group',
 'config': 'setting_of_micro_manager_config_group'
 },

 'exposure': exposure_time_in_ms,

 #For z stacks
 'z': z_position_in_µm,

 #For timelapses: how long to wait before starting next time point in s
 'min_start_time': time_in_s

 #For XY stages
 'x': x_position_in_µm,
 'y': y_position_in_µm,
 #If xy stage positions are in a grid
 'row': row_index_of_xy_position,
 'col': col_index_of_xy_position,

 #Turn of autoshutter, and keep the shutter open while acquiring
 'keep_shutter_open': True,

 #Other arbitrary hardware settings can be encoded in a list of strings with
 #each entry containing the name of the device, the name of the property,
 #and the value of the property seperated with '-'
 'properties': [['DeviceName', 'PropertyName', 'PropertyValue'],
 ['OtherDeviceName', 'OtherPropertyName', 'OtherPropertyValue']],
 }

High-level acquisition APIs

	
class pycromanager.Bridge(port=4827, convert_camel_case=True, debug=False)

	Create an object which acts as a client to a corresponding server running within micro-manager.
This enables construction and interaction with arbitrary java objects

	Parameters

	
	port (int) – The port on which the bridge operates

	convert_camel_case (bool) – If True, methods for Java objects that are passed across the bridge
will have their names converted from camel case to underscores. i.e. class.methodName()
becomes class.method_name()

	debug (bool) – If True print helpful stuff for debugging

	
construct_java_object(classpath, new_socket=False, args=None)

	Create a new instance of a an object on the Java side. Returns a Python “Shadow” of the object, which behaves
just like the object on the Java side (i.e. same methods, fields). Methods of the object can be inferred at
runtime using iPython autocomplete

	Parameters

	
	classpath (str) – Full classpath of the java object

	new_socket (bool) – If True, will create new java object on a new port so that blocking calls will not interfere
with the bridges master port

	args (list) – list of arguments to the constructor, if applicable

	Returns

	

	Return type

	Python “Shadow” to the Java object

	
get_core()

	Connect to CMMCore and return object that has its methods

	Returns

	Python “shadow” object for micromanager core

	
get_magellan()

	return an instance of the Micro-Magellan API

	
get_studio()

	return an instance of the Studio object that provides access to micro-manager Java APIs

	
class pycromanager.Acquisition(directory=None, name=None, image_process_fn=None, pre_hardware_hook_fn=None, post_hardware_hook_fn=None, post_camera_hook_fn=None, show_display=True, tile_overlap=None, max_multi_res_index=None, magellan_acq_index=None, magellan_explore=False, process=False, debug=False)

	
	Parameters

	
	directory (str) – saving directory for this acquisition. Required unless an image process function will be
implemented that diverts images from saving

	name (str) – Saving name for the acquisition. Required unless an image process function will be
implemented that diverts images from saving

	image_process_fn (Callable) – image processing function that will be called on each image that gets acquired.
Can either take two arguments (image, metadata) where image is a numpy array and metadata is a dict
containing the corresponding iamge metadata. Or a 4 argument version is accepted, which accepts (image,
metadata, bridge, queue), where bridge and queue are an instance of the pycromanager.acquire.Bridge
object for the purposes of interacting with arbitrary code on the Java side (such as the micro-manager
core), and queue is a Queue objects that holds upcomning acquisition events. Both version must either
return

	pre_hardware_hook_fn (Callable) – hook function that will be run just before the hardware is updated before acquiring
a new image. In the case of hardware sequencing, it will be run just before a sequence of instructions are
dispatched to the hardware. Accepts either one argument (the current acquisition event) or three arguments
(current event, bridge, event Queue)

	post_hardware_hook_fn (Callable) – hook function that will be run just before the hardware is updated before acquiring
a new image. In the case of hardware sequencing, it will be run just after a sequence of instructions are
dispatched to the hardware, but before the camera sequence has been started. Accepts either one argument
(the current acquisition event) or three arguments (current event, bridge, event Queue)

	post_camera_hook_fn (Callable) – hook function that will be run just after the camera has been triggered to snapImage or
startSequence. A common use case for this hook is when one want to send TTL triggers to the camera from an
external timing device that synchronizes with other hardware. Accepts either one argument (the current
acquisition event) or three arguments (current event, bridge, event Queue)

	tile_overlap (int or tuple of int) – If given, XY tiles will be laid out in a grid and multi-resolution saving will be
actived. Argument can be a two element tuple describing the pixel overlaps between adjacent
tiles. i.e. (pixel_overlap_x, pixel_overlap_y), or an integer to use the same overlap for both.
For these features to work, the current hardware configuration must have a valid affine transform
between camera coordinates and XY stage coordinates

	max_multi_res_index (int) – Maximum index to downsample to in multi-res pyramid mode. 0 is no downsampling,
1 is downsampled up to 2x, 2 is downsampled up to 4x, etc. If not provided, it will be dynamically
calculated and updated from data

	show_display (bool) – show the image viewer window

	magellan_acq_index (int) – run this acquisition using the settings specified at this position in the main
GUI of micro-magellan (micro-manager plugin). This index starts at 0

	magellan_explore (bool) – Run a Micro-magellan explore acquisition

	process (bool) – Use multiprocessing instead of multithreading for acquisition hooks and image
processors. This can be used to speed up CPU-bounded processing by eliminating bottlenecks
caused by Python’s Global Interpreter Lock, but also creates complications on Windows-based
systems

	debug (bool) – whether to print debug messages

	
acquire(events, keep_shutter_open=False)

	Submit an event or a list of events for acquisition. Optimizations (i.e. taking advantage of
hardware synchronization, where available), will take place across this list of events, but not
over multiple calls of this method. A single event is a python dictionary with a specific structure

	Parameters

	
	events –

	keep_shutter_open – (Default value = False)

	
await_completion()

	Wait for acquisition to finish and resources to be cleaned up

	
get_dataset()

	

	
pycromanager.multi_d_acquisition_events(num_time_points=1, time_interval_s=0, z_start=None, z_end=None, z_step=None, channel_group=None, channels=None, channel_exposures_ms=None, xy_positions=None, xyz_positions=None, order='tpcz', keep_shutter_open_between_channels=False, keep_shutter_open_between_z_steps=False)

	Convenience function for generating the events of a typical multi-dimensional acquisition (i.e. an
acquisition with some combination of multiple timepoints, channels, z-slices, or xy positions)

	Parameters

	
	num_time_points (int) – How many time points if it is a timelapse (Default value = 1)

	time_interval_s (float) – the minimum interval between consecutive time points in seconds. Keep at 0 to go as
fast as possible (Default value = 0)

	z_start (float) – z-stack starting position, in µm. If xyz_positions is given z_start is relative
to the points’ z position. (Default value = None)

	z_end (float) – z-stack ending position, in µm. If xyz_positions is given z_start is
relative to the points’ z position. (Default value = None)

	z_step (float) – step size of z-stack, in µm (Default value = None)

	channel_group (str) – name of the channel group (which should correspond to a config group in micro-manager) (Default value = None)

	channels (list of strings) – list of channel names, which correspond to possible settings of the config group
(e.g. [‘DAPI’, ‘FITC’]) (Default value = None)

	channel_exposures_ms (list of floats or ints) – list of camera exposure times corresponding to each channel. The length of this list
should be the same as the the length of the list of channels (Default value = None)

	xy_positions (arraylike) – N by 2 array where N is the number of XY stage positions, and the 2 are the X and Y
coordinates (Default value = None)

	xyz_positions (arraylike) – N by 3 array where N is the number of XY stage positions, and the 3 are the X, Y and Z coordinates.
If passed then z_start, z_end, and z_step will be relative to the z_position in xyz_positions. (Default value = None)

	z_positions (arraylike) – The z_positions for each xy point. Either 1D (shape: (N,)) to specify the center z position for each xy point,
or 2D (shape: (N, n_z)) to fully specify the xyz points.
If z_positions is 1D and z_start, z_end and z_step are not None then relative
z_positions will be created using np.arange(z_position + z_start, z_position + z_end, z_step)

	order (str) – string that specifies the order of different dimensions. Must have some ordering of the letters
c, t, p, and z. For example, ‘tcz’ would run a timelapse where z stacks would be acquired at each channel in
series. ‘pt’ would move to different xy stage positions and run a complete timelapse at each one before moving
to the next (Default value = ‘tpcz’)

	keep_shutter_open_between_channels (bool) – don’t close the shutter in between channels (Default value = False)

	keep_shutter_open_between_z_steps (bool) – don’t close the shutter during steps of a z stack (Default value = False)

	Returns

	events

	Return type

	dict

Reading acquired data

	
class pycromanager.Dataset(dataset_path=None, full_res_only=True, remote_storage=None)

	Class that opens a single NDTiffStorage dataset

	
as_array(stitched=False, verbose=False)

	Read all data image data as one big Dask array with last two axes as y, x and preceeding axes depending on data.
The dask array is made up of memory-mapped numpy arrays, so the dataset does not need to be able to fit into RAM.
If the data doesn’t fully fill out the array (e.g. not every z-slice collected at every time point), zeros will
be added automatically.

To convert data into a numpy array, call np.asarray() on the returned result. However, doing so will bring the
data into RAM, so it may be better to do this on only a slice of the array at a time.

	Parameters

	
	stitched (bool) – If true and tiles were acquired in a grid, lay out adjacent tiles next to one another (Default value = False)

	verbose (bool) – If True print updates on progress loading the image

	Returns

	dataset

	Return type

	dask array

	
has_image(channel=None, z=None, time=None, position=None, channel_name=None, resolution_level=0, row=None, col=None, **kwargs)

	Check if this image is present in the dataset

	Parameters

	
	channel (int) – index of the channel, if applicable (Default value = None)

	z (int) – index of z slice, if applicable (Default value = None)

	time (int) – index of the time point, if applicable (Default value = None)

	position (int) – index of the XY position, if applicable (Default value = None)

	channel_name (str) – Name of the channel. Overrides channel index if supplied (Default value = None)

	row (int) – index of tile row for XY tiled datasets (Default value = None)

	col (int) – index of tile col for XY tiled datasets (Default value = None)

	resolution_level – 0 is full resolution, otherwise represents downampling of pixels
at 2 ** (resolution_level) (Default value = 0)

	**kwargs – Arbitrary keyword arguments

	Returns

	indicating whether the dataset has an image matching the specifications

	Return type

	bool

	
read_image(channel=None, z=None, time=None, position=None, channel_name=None, read_metadata=False, resolution_level=0, row=None, col=None, memmapped=False, **kwargs)

	Read image data as numpy array

	Parameters

	
	channel (int) – index of the channel, if applicable (Default value = None)

	z (int) – index of z slice, if applicable (Default value = None)

	time (int) – index of the time point, if applicable (Default value = None)

	position (int) – index of the XY position, if applicable (Default value = None)

	channel_name – Name of the channel. Overrides channel index if supplied (Default value = None)

	row (int) – index of tile row for XY tiled datasets (Default value = None)

	col (int) – index of tile col for XY tiled datasets (Default value = None)

	resolution_level – 0 is full resolution, otherwise represents downampling of pixels
at 2 ** (resolution_level) (Default value = 0)

	read_metadata (bool) – (Default value = False)

	memmapped (bool) – (Default value = False)

	**kwargs – names and integer positions of any other axes

	Returns

	image – image as a 2D numpy array, or tuple with image and image metadata as dict

	Return type

	numpy array or tuple

	
read_metadata(channel=None, z=None, time=None, position=None, channel_name=None, row=None, col=None, resolution_level=0, **kwargs)

	Read metadata only. Faster than using read_image to retrieve metadata

	Parameters

	
	channel (int) – index of the channel, if applicable (Default value = None)

	z (int) – index of z slice, if applicable (Default value = None)

	time (int) – index of the time point, if applicable (Default value = None)

	position (int) – index of the XY position, if applicable (Default value = None)

	channel_name – Name of the channel. Overrides channel index if supplied (Default value = None)

	row (int) – index of tile row for XY tiled datasets (Default value = None)

	col (int) – index of tile col for XY tiled datasets (Default value = None)

	resolution_level – 0 is full resolution, otherwise represents downampling of pixels
at 2 ** (resolution_level) (Default value = 0)

	**kwargs – names and integer positions of any other axes

	Returns

	metadata

	Return type

	dict

Low-level (micro-manager core) APIs

The core API is discovered dynamically at runtime, though not every method is implemented. Typing core. and using autocomplete with IPython is the best way to discover which functions are available. Documentation on for the Java version of the core API (which pycromanager calls) can be found here [https://valelab4.ucsf.edu/~MM/doc-2.0.0-gamma/mmcorej/mmcorej/CMMCore.html].

 Citing Pycro-Manager

Citing Pycro-Manager

If Pycro-Manager is useful to your work, please cite this pre-print [https://arxiv.org/abs/2006.11330]

 Index

Index

 A
 | B
 | C
 | D
 | G
 | H
 | M
 | R

A

 	
 	acquire() (pycromanager.Acquisition method)

 	Acquisition (class in pycromanager)

 	
 	as_array() (pycromanager.Dataset method)

 	await_completion() (pycromanager.Acquisition method)

B

 	
 	Bridge (class in pycromanager)

C

 	
 	construct_java_object() (pycromanager.Bridge method)

D

 	
 	Dataset (class in pycromanager)

G

 	
 	get_core() (pycromanager.Bridge method)

 	get_dataset() (pycromanager.Acquisition method)

 	
 	get_magellan() (pycromanager.Bridge method)

 	get_studio() (pycromanager.Bridge method)

H

 	
 	has_image() (pycromanager.Dataset method)

M

 	
 	multi_d_acquisition_events() (in module pycromanager)

R

 	
 	read_image() (pycromanager.Dataset method)

 	
 	read_metadata() (pycromanager.Dataset method)

 Stage-scanned light sheet imaging

Stage-scanned light sheet imaging

This notebook explains how to perform stage-scanned light sheet imaging.

To acquire a z-stack, the camera is set to ‘External Start’ mode. The stage moves at a constant speed during the acqusition. When the stage initiates the scanning, it sends out a TTL to trigger the camera to start acquisiton.

To acquire a time lapse 3D dataset, the process described above is repeated for n times (n: number of time points).

Note: To avoid motion blur during the stage scan, a method called ‘Light-sheet stablized stage scanning (LS3)’ is used. With this method, A galo mirror is used to offset the stage motion during each frame. The galvo is controlled independently by another python script using the NI-DAQmax API. Details of the LS3 methods can be found in: https://www.biorxiv.org/content/10.1101/2020.09.22.309229v1

[1]:

from pycromanager import Acquisition, Bridge

Define a hook function to start the scanning of the stage

[5]:

def move_stage(event):
 message = "scan"
 core.set_serial_port_command(port, message, "\r")
 return event

Construct java objects

[6]:

bridge = Bridge()
core = bridge.get_core()
mm = bridge.get_studio()

Acquisition parameter

[7]:

nb_timepoints = 5
scan_step = 2.0 # unit: um
stage_scan_range = 200.0 # unit: um
interval = 1 # interval time between each time point, unit: second
exposureMs = core.get_exposure()
nrSlices = int(stage_scan_range / scan_step)

save_directory = r"E:\data"
save_name = "test"

port = "COM4"
speed = scan_step / exposureMs

Stage settings

Note: an ASI MS200 stage is used here. If you have a different stage, consult the manual to find out the correct way to operate it.

[8]:

set backlash
message = "backlash x=0.02 y=0.0"
print("set backlash: " + message)
core.set_serial_port_command(port, message, "\r")

set default speed
message = "speed x=10 y=10"
core.set_serial_port_command(port, message, "\r")

set speed. note: here x-axis is the stage motion axis.
message = "speed x=" + "{:.4f}".format(speed)
print("set speed to scan: ", message)
core.set_serial_port_command(port, message, "\r")

set current position to zero
message = "zero"
core.set_serial_port_command(port, message, "\r")

set the scan range
message = "scanr x=0.0 y=" + "{:.4f}".format(stage_scan_range / 1000)
print("scan range: " + message)
core.set_serial_port_command(port, message, "\r")

set backlash: backlash x=0.02 y=0.0
set speed to scan: speed x=0.0999
scan range: scanr x=0.0 y=0.2000

Camera settings

Note: an Hamamasty Flash 4.0 camear is used here. If you have a different camera, consult the manual to find out the correct way to set the parameter.

[9]:

Camera trigger settings
core.set_property("HamamatsuHam_DCAM", "TRIGGER SOURCE", "EXTERNAL")
core.set_property("HamamatsuHam_DCAM", "TRIGGER DELAY", "0.0")

The main function to perform the time lampse 3D imaging

[]:

if __name__ == "__main__":
 # generate the multi-dimensional events
 events = []
 for t in range(nb_timepoints):
 event = []
 for z in range(nrSlices):
 event.append({"axes": {"time": t, "z": z}, "min_start_time": interval})
 events.append(event)
 print(events)

 with Acquisition(
 directory=save_directory,
 name=save_name,
 pre_hardware_hook_fn=sleep,
 post_camera_hook_fn=move_stage,
) as acq:
 for t in range(nb_timepoints):
 acq.acquire(events[t])
 acq.await_completion()

 # set back camera property
 core.set_property("HamamatsuHam_DCAM", "TRIGGER SOURCE", "INTERNAL")

 # set the stage to default speed
 message = "speed x=10 y=10"
 core.set_serial_port_command(port, message, "\r")

nav.xhtml

 Table of Contents

 		
 setup

_images/acquisition_figure.png
Acquisition

. Hardware- Adjust Trigger Get
endgine optimized hardware — camera d image(s)
thread events
Image processing and
saving thread
Acquisition Acquisition hooks Default

event gueue Synchronously run custom code Images ~ saving and

during acquisition display

Micro-Magellan Acquisition
acquisitions event API

Adapt settings in
response to images

Acquisition events Image processors

Modify or analyze

Flexible system for y b
acquired images

acquisition instructions

Acquire data based on analyzed images

_images/guiding_acq_with_neural_network_attention_13_1.png

_images/guiding_acq_with_neural_network_attention_13_3.png

_images/guiding_acq_with_neural_network_attention_15_0.png

_images/overview_figure.png
Micro-Manager
— mg Pycro-Manager

é{; Java ——

<) conrond
— = = e

@& python’

, i
apen

manager
plugins

Low and high level APIs for
easily integrating other Python
libraries with data acquisition

Micro- —
Manager F
APIls .
High-speed data

5 transfer layer
(single machine

Hardware Micro- fwork
abstraction Manager or network)
layer core -
! Additional Data Scientific Machine
hardware

visualization computing learning

Device drivers control

_ima